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ABSTRACT 

 

We suggest formulas able to capture potential strong connection among credit losses in downturns 

without assuming any specific distribution for the variables involved. We first show that the current 

model adopted by regulators (Basel) is equivalent to a conditional distribution derived from the Gaussian 

Copula (which does not identify tail dependence). We then use conditional distributions derived from 

copulas that express tail dependence to estimate the probability of credit losses in extreme scenarios. 

Next, we use data on historical credit losses incurred in American banks to compare the suggested 

approach to the Basel formula with respect to their performance when predicting the extreme losses 

observed in 2009 and 2010. Our results indicate that, in general, the copula approach outperforms the 

Basel method in two of the three credit segments investigated. The proposed method is extendable to 

other differentiable copula families which  gives flexibility to future practical applications of the model. 
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1.  INTRODUCTION 

The model (Basel Accord) adopted by regulators in many countries to calculate the capital to cover 

unexpected credit losses in financial institutions assumes normally-distributed variables and uses the 

linear correlation to measure dependence among losses. However, these assumptions do not allow the 

identification of possible asymmetric dependence across losses in extreme scenarios (which seems to be 

the case for several financial assets, loans included) and, therefore, the Basel method may misestimate 

joint credit losses in periods of crisis. 

Albeit the formula currently used in Basel Accords has a derivation not associated to copula functions, we 

show that it turns out to be equivalent to the first derivative of the Gaussian Copula (which denotes 

symmetric association without tail dependence). Moreover, the distribution of one variable conditional on 

another variable can be calculated as the first derivative of the copula that represents the dependence 

between the considered variables with respect to the conditioning variable. In other words, the Basel 

formula can be interpreted as the cumulative distribution of a latent variable (asset returns of obligors, for 

instance) conditional on the economic status. Based on this interpretation of the Basel model, we propose 

the use of copulas that capture stronger dependence among high losses (stronger dependence among low 

values of debtors’ asset returns) to generate alternative conditional distributions. So, we keep the basic 

intuition of the traditional approach but change the dependence structure such that we can, for example, 

identify higher probability of default in adverse scenarios. The alternative model is basically set as the 

first derivative of the copula chosen to represent the relationship between the latent variable and the 

economic factor with respect to the latter variable. At this point, we face a challenge pertaining to the 

copula parameter that measures the dependence intensity. For some copulas, this parameter can be directly 

deduced from the rank correlation (Kendall’s tau) between the variables. Thus we need to find the rank 

correlation between the latent variable of each loan and the economic factor but we cannot calculate it 

since we do not have enough information about the second variable. To overcome this problem, we show 

that the rank correlation between the latent variable of each debtor and the economic factor is related to 

the rank correlation between two latent variables (e.g. asset returns of two obligors) which can be 

presumed from past losses (default rates). Once we have an estimate for the former rank correlation, we 

will have all necessary information to calculate the conditional probability by means of the first derivative 

of a copula with a given confidence (unfavorable economic level).  

As examples, we present two formulas originated from the Clayton and the Student t Copulas that are able 

to detect stronger connection (tail dependence) among low values of latent variables (which is equivalent 

to identify higher dependence among high credit losses). These formulas do not assume any kind of 

distribution for the variables considered and therefore such approach overcomes the limitations of the 

existing method with regard to the assumption of normality and the use of the linear correlation. 
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We use aggregate data on losses in American banks to check the performance of the suggested approach 

and our analyses show that, for two of the three credit segments considered, the copula formulas typically 

outperform the Basel formula regarding the estimation of unusually high losses. 

In short, our contributions are threefold: (i) we present an alternative derivation of the Basel formula and 

show that it corresponds to the first derivative of the Gaussian Copula; (ii) we set up a model able to 

capture stronger dependence among credit losses in unfavorable scenarios which results in more efficient 

estimations of potential extreme losses; and (iii) we propose a way to derive the dependence between a 

latent variable of each loan and an economic factor from the dependence observed across loans’ default 

rates. 

 

2. COPULAS AND CONDITIONAL DISTRIBUTIONS 

Copulas are multivariate distribution functions with uniformly distributed margins in (0,1) that link 

marginal (individual) distributions of variables to their joint distributions: 

 

))(),...,((),...,( 111...1 nnnn xFxFCxxF   

 

where F(.) denotes a cumulative distribution function and C stands for a copula. Thus, C  is an expression 

(function) with n  inputs and, when evaluated at )(),...,( 11 nn xFxF , returns the joint cumulative 

distribution of the n  variables evaluated at nxx ,...,1 , i.e., the probability that all variables nXX ,...,1  

are concurrently below the respective values nxx ,...,1 . 

According to Joe (1996)
2
, the cumulative distribution of a random variable conditional on other variables 

is given by the first derivative of the copula that represents the dependence among the variables with 

respect to the conditioning variables (those placed after the symbol “|”): 
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where F(x|v) is the distribution of X evaluated at x conditional on vector v,
 jjxvC

v| is a copula 

distribution function, vj  is a component of vector v and v-j  is the vector v excluding this component. 

When v is univariate, the conditional distribution becomes: 

                                                           
2
 A detailed proof of this formula is given in Czado (2010). 
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where x and v indicate the conditioned and the conditioning variables respectively and the remaining 

notation is the same used in the prior formula.  

The first derivative of some bivariate copulas can be found, for example, in Joe (1997, Chapter 5), Aas et 

al. (2009, Appendix C) and Bouyé and Salmon (2009). Three families of particular interest here are the 

Gaussian (Normal), the Clayton and the Student t that respectively generate the conditional distributions 

stated in [1], [2] and [3]: 
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where   and 
1  represent the standard normal distribution and its inverse respectively, F(.|.) is the 

distribution of X1 conditional on X2, F(.) is an unconditional distribution and 12  is the Gaussian Copula 

parameter
3
 that indicates the strength of the dependence between X1 and X2. 
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where F(.|.) is the distribution of X1 conditional on X2, F(.) is an unconditional distribution and 
12  is the 

Clayton Copula parameter between X1 and X2. 
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 The parameter of the Gaussian Copula is usually represented by  . We adopt the notation   to distinguish the 

Gaussian Copula parameter from the linear correlation coefficient between the variables studied. These two 

measures of dependence are identical only when the marginal distributions are normal. 

[ 2 ]  

[ 1 ]  

[ 3 ]  
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where vT  and 
1

vT  represent the Student t cumulative distribution function and its inverse, respectively, 

with v degrees of freedom (v > 0); the other variables are defined as in [1] and [2]. Bear in mind that as v 

increases, this conditional distribution approaches [1].  

The copula parameter    is closely related to rank correlations Kendall’s tau ( ). For two variables 1X  

and 2X  with distribution functions evaluated at 1x  and 2x , 111 )( uxF   and 222 )( uxF   

correspondingly, the intensity   of their representative copula can be inferred from
4
: 
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3. BASEL METHOD: A DERIVATION FROM THE GAUSSIAN COPULA 

3.1 The calculation of extreme credit losses 

For each homogeneous credit segment, the capital required to cover unexpected losses is calculated as the 

unexpected losses adjusted by the portfolio maturity. 

In mathematical terms: 

 

MaturityPDLGDKLGD V *)**(   

 

where LGD  is the “loss given default” (which is equal to 1 - recovery rate, i.e. the percentage of exposure 

the lender will lose if borrowers default) and PD stands for the probability of default. Maturity 

corresponds to the maturity of corporate loans (i.e., not applied to consumer debt) and is added to the 

calculation in order to give higher weight to long-term obligations which are known to be riskier. For the 

sake of brevity, the maturity formula is not presented here. See BCBS (2005, 2006) for more details.  

The other term in [5], 
VK , is the expected default rate at the 99.9

th
 percentile of the PD  distribution 

(“Vasicek Formula”) - see Vasicek (1991, 2002) - and is calculated as: 
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where: 

                                                           
4
 The proof is given, for example, in McNeil et al. (2005, Chapter 5) and Nelsen (2006, Chapter 5). 

[ 5 ] 

[ 6 ] 

[ 4 ] 
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  and 
1  represent the standard normal cumulative distribution and its inverse, respectively; PD is the 

probability of default of the loan portfolio (average); )999.0(1  is the level of the economy 

(confidence) chosen to represent an extreme scenario when unexpected losses may occur and rho (  ) is 

the correlation between returns of obligors’ assets.   is the linear correlation between the unobserved 

systematic factor and those asset returns. In Basel method, the correlation between asset returns is 

calculated as a decreasing function of PD and (in the case of corporate debt) the size of debtors (measured 

in terms of annual sales); see formulas in BCBS (2005, 2006).  

Thus, the terms LGD * KV  and  LGD * PD in [5] represent, respectively, the extreme and the average 

losses net of recoveries. 

 

3.2 Derivation of KV from the Gaussian Copula 

Expression [6] is typically derived from Factor Models which assume that the correlation among defaults 

is driven by the debtors’ latent variables. See, e.g., Crouhy et al. (2000) and  Bluhm et al. (2002) for 

general information about Credit Factor Models and Schönbucher (2000) and Perli and Nayda (2004) for 

the derivation of [6] from Factor Models.  

Naturally, there are many common factors that act together and influence debtors’ situation. However this 

model can be simplified if we consider that all latent variables (usually interpreted as asset returns of 

borrowers) are driven by only one common factor (the “economic status”).  For simplicity, all pairs of 

asset returns (i and j) are considered to present the same correlation ( ij ). The correlation between the 

asset return (Y) of each debtor and the systematic factor (E) is denoted by YE . Since the variables in this 

approach are assumed to follow the jointly standard normal distribution, we have (see, e.g., Hull and 

White 2004): 

 

ijYE    

 

This equality is essential to the subsequent calculations since there is usually no adequate proxy for E  

(which is not observable) and, consequently, YE  cannot be directly estimated from empirical data. On 

the other hand, we can infer the correlation between asset returns, ij , from historical losses (default 

rates).  

We show here that [6] is also associated with the Gaussian Copula and, to our knowledge, this has not 

been shown in previous studies. Starting from [1], the conditional distribution calculated from the 

[ 7 ] 
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Gaussian Copula (restated below for convenience), consider that  X1 is a latent variable, x1 is the level 

below which obligors default and X2 is the economic status (single factor). So, this formula gives the 

likelihood of the latent variable X1 being below a specific value x1 (the probability of default) conditional 

on X2 = x2. Assume that both variables follow the standard normal distribution.  
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Therefore PDxxF  )()( 111
 (i.e. the probability of the latent variable X1 being below the cutoff 
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11

1 PDxF    returns x1, the latent variable cutoff
5
. )()( 222 xxF   is the level 

of the economic situation and the inverse of its distribution  ))(( 22

1 xF  
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the “value” of the economic variable. So, the smaller )( 2x  is the worse the economic status gets and to 

express adverse scenarios in [1] small values for )( 2x  
should be used. Basel adopts the confidence 

level of 99.9% and this is expressed as )999.0(1 , which is equal to )001.0(1 . The parameter 
12  

in [1] refers to the dependence between X1 and X2. If we assume that X1 and X2 have individual normal 

distributions, 12  will be equal to the linear correlation between the variables (denoted here as 12 ) which 

cannot be estimated given that there is no sufficient information on the economic factor. Assume we can 

assess the linear correlation between the latent variables (based on the observed default rates). Under the 

conditions specified (i.e. the latent variables and the economic factor follow the standard normal 

distribution) and according to [7], 
12  can be associated to the linear correlation   between the latent 

variables (or the probabilities of default) such that  12 .  

In resume, setting F1(x1) = PD and F2(x2) = 0.999, replacing )999.0(1  with )001.0(1  and noting 

that   1212 , we see that the first derivative of the Gaussian Copula, [1], corresponds to the 

formula (restated below) used in Basel to calculate the probability of default conditional on an extremely 

unfavorable economic situation: 
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5
 As before,   represents the standard normal distribution and 

1  indicates its inverse. 

[ 1 ] 

restated 



8 
 

4. EMPLOYING ALTERNATIVE CONDITIONAL DISTRIBUTIONS TO CAPTURE TAIL 

DEPENDENCE 

4.1 Some prior suggestions 

As indicated in some empirical studies (for instance, Di Clemente and Romano 2004 and Das and Geng 

2006), higher credit losses tend to be more associated than low levels of losses. Some models have been 

proposed to transform [6] into other expressions that do not have the limitation regarding the assumption 

of normality and can capture skewness and heavy tails (which tends to increase the joint occurrences of 

extreme realizations of the latent variables). Hull and White (2004), for instance, relax the distributions
6
 

of the latent variable Y, the economic factor E and the idiosyncratic (specific) risk. Letting F, G and H 

denote the distributions of those three variables respectively, the probability of default conditional on an 

unfavorable economic status (the worst 0.1% scenario, i.e. with confidence of 99.9%) turns out to be: 
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where e* indicates an extreme adverse economic scenario and can be calculated as the inverse distribution 

of E evaluated at 0.001 (since the critical level was set at 0.1%). PD is the historical (average) probability 

of default and   is the linear correlation between returns of obligors’ assets. Naturally, the expression 

above can be solved only if the shapes of the three distributions F, G and H  are known.  

A number of studies, such as Bluhm et al. (2002) and Kang (2005), have suggested the Student t 

distribution to represent the economic and the idiosyncratic risks (functions G and H above). In this case, 

it is not possible to define the distribution F of the latent variable and the probability of default in 

downturns (at the 0.1% worst scenario) is: 
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where Tv is the Student t distribution with v degrees of freedom. Given that the latent variable’s 

distribution F remains unknown, the preceding likelihood cannot be calculated. Chan-Lau (2010) reasons 

that this approach can be used to capture asymmetry and fat tails in the calculation of regulatory capital in 

financial institutions. 

                                                           
6
 Provided that they are scaled with mean zero and variance one. 
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In view of the impossibility of the estimation of the probability of default in adverse economic scenarios 

when one (or more) of the variables in [6] are not normally distributed, we propose a different setup to 

incorporate Copula Theory into this analysis and to capture potential tail dependence even if we do not 

know any of the distributions concerning the latent variable and the economic factor (which is the reality 

in financial institutions).  

 

4.2 Some alternatives to detect higher dependence across losses in downturns 

Recalling that credit losses imply the existence of small values of the latent variables, we can interpret the 

stronger connection among losses in downturns as an effect of the intensification of the dependence 

across small latent variables. In other words, this is evidence that small values of the latent variables tend 

to be more connected over adverse periods. Thus the relationship between two latent variables, Yi and Yj, 

can be represented by scatterplots like the ones in Figure 1.  

 

[Insert Figure 1 here] 

 

The difference between Panels A and B is that the former does not indicate right-tail dependence whilst 

the latter does. However this difference does not impact our analyses since we are interested in the left tail 

(small values of the latent variables) regardless of the variables behavior in the right tail. Therefore the 

representation in either of those two panels is suitable for modeling strong dependencies among losses in 

bear markets. 

When the economic factor E is inserted in the analysis, reduced levels of this variable will present more 

intense association with the latent variables. Figure 2 shows the dependence between E and each latent 

variable in the context of Panel A in Figure 1. The correspondence between Figure 1 (Panel A) and Figure 

2 can be noticed by comparing the level of Yi and Yj in a downturn (e*, for example) with the level of 

those latent variables when the economy is booming (e**, for example). In the first case, both Yi and Yj  

tend to be small whilst in the better economic scenario, e**, a wider range of different values of the latent 

variables are associated (i.e. there is a higher likelihood that a small Yi and an elevated Yj, for instance, 

will happen at the same time when the economic is at the level e**). So, this means that the lower-tail 

dependence characterizes not only the relationship between the underlying variables but also the link 

between the economic status and each latent variable. A similar reasoning applies to Panel B in Figure 1. 

 

[Insert Figure 2 here] 
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The dependence structures depicted in Figure 1 can be represented by, for example, the Clayton Copula 

(Panel A) and the Student t Copula (Panel B). In these cases, the proportion of loans in the portfolio for 

which the latent variable, Y, will be smaller than the cutoff yc (i.e. the probability of default) when the 

economy falls to an extremely low level (e*) is derived from [2] and [3] respectively: 
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where F(.|.)  indicates a conditional distribution, FE(e*) is the cumulative distribution of the economic 

factor (which indicates adverse scenarios when it approaches 0 and booms when it gets close to 1), FY(yc) 

is the average (historically observed) default rate (a proxy for the probability of default), vT  and 
1

vT  

represent the Student t cumulative distribution function and its inverse, respectively, with v degrees of 

freedom (v > 0) and YE  is the copula parameter between Y and E. 

Among the three variables necessary to compute extreme losses by applying [8] and [9], two, FY(yc) and 

FE(e*), are readily available; the former is the expected probability of default (default rate) of the 

homogeneous portfolio and the latter is to be set according to the confidence demanded for the economic 

scenario
7
. Naturally, it is expected that the probability of the latent variable of each obligor being below a 

particular cutoff, given a specific economic level, increases when the dependence among the defaults 

becomes stronger. In the case of the Clayton Copula, this monotonically increasing behavior of F(yc|E) 

with respect to YE  happens only if FE(e*)   FY(yc). When FE(e*)  FY(yc), F(yc|E) is a quadratic function 

of YE  and starts falling after rising up to a specific value. Therefore the calculation of the regulatory 

capital based on the Clayton Copula will yield more consistent results if the extreme economic level is 

restricted to percentiles smaller than or equal to the percentiles of the latent variables, i.e. if 

PDeFE *)( , where PD is the average default probability of the portfolio. This does not represent any 

                                                           
7
 Since FE(e*) is truncated in the interval [0,1] and small values represent adverse scenarios, 0.01 indicates the 

confidence level of 99%, 0.05 is associated with the confidence of 95% and so on. 

[ 8 ] 

[ 9 ] 



11 
 

significant concern in this context because we are interested in small values of FE(e*)  that indicate 

downturns. 

One way to find the other variable in [8] and [9], 
YE , is to derive it from the rank correlation between Y 

and E (Kendall’s tau, 
YE ). As shown in [4], the Kendall’s tau between two variables is associated with 

the parameter of the copula that represents their dependence. For some families this association is defined 

in closed form (see some examples in Nelsen, 2006, Chapter 5). We present below the association 

between Kendall’s tau and the parameters of the two copula families used here to capture high 

dependence across credit losses in unfavorable scenarios (Clayton and Student t, respectively).  The first 

one is derived from a relationship presented in Nelsen (2006, Chapter 5) and the last one is derived from 

an association mentioned in McNeil et al. (2005, Chapter 5): 

 

YE

YEC

YE








1

2
 

 











2
sin


 YEt

YE  

 

However we do not have enough information on E  to estimate 
YE . When the Gaussian Copula is used, 

this problem is resolved by replacing the correlation between Y and E with the correlation between the 

latent variables of debtors (expression [7]). Thus, assuming that the rank correlation between the latent 

variables, ij , can be inferred from data sets pertaining to credit losses (in the same way the linear 

correlations across probabilities of default were estimated in Basel Accords for different loan classes), we 

should look for a correspondence between YE  and ij  so that YE  can be calculated and plugged into the 

aforementioned expressions [8] and [9]. 

 

4.3 Relationship between rank correlations 

4.3.1 Rank correlation between the latent variables in homogeneous portfolios 

Kendall’s tau ( ) is based on the number of concordant and discordant pairs of variables. Assuming 

),( 11 YX   and ),( 22 YX  are two independent pairs from a joint distribution, they will be concordant if 

0))(( 1212  YYXX , i.e., if the two variables move in the same direction. They will be discordant 

when 0))(( 1212  YYXX . Kendall’s tau is the difference between the proportion of concordant and 

[ 10 ] 

[ 11 ] 
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discordant pairs, i.e.,   = Pr[concordance] – Pr[discordance]. Defining c as the number of concordant 

pairs and d as the number of discordant ones, Kendall’s tau is equivalently expressed as:  

 

dc
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Let N be the number of observations (which will be the same for both variables). So, for any pair, c + d = 

N and, from [12], c - d =  N. By combining these two expressions, we get: 
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Table 1, Panel A, illustrates the co-movements of  L  loans (represented by their respective latent 

variables Yi where 1  i  L) and the systematic factor E. The arrows “” and “” indicate the direction 

which the variables move in. So, if two of them have equal arrows, they move in the same direction and 

are therefore “concordant”. Conversely, if one arrow points up while the other one points down, the pairs 

of variables are “discordant”.  

 

[Insert Table 1 here] 

 

As in Basel, we assume that all pairs of loans have the same dependence (here expressed by the Kendall’s 

tau between the latent variables, ij for loans i and j) and that the dependence between the systematic 

factor E and each loan (YE) is also the same. In a portfolio of L loans, one way to comply with the two 

aforementioned constraints is to assume that, in each period, the latent variables of the same number of 

loans move in the same direction (i.e. decreasing or increasing) – see a simple example concerning a 

portfolio with three loans in Panel B of Table 1 (from period 1 to period 3, each latent variable is 

concordant with the economic factor, E, in two periods; in periods 4 and 5, all latent variables are either 

concordant or discordant). 

Since we are assuming that the latent variable of each debtor has equal dependence in terms of the 

economic factor, cEi = cEj (where cEi indicates the number of concordant pairs between the economic 

[ 12 ] 

[ 14 ] 

[ 13 ] 
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factor, E, and the latent variable of debtor i). The same applies to the number (d) of discordant pairs (that 

is, dEi = dEj). Hence, this condition is satisfied whenever Yi and Yj are concordant because the relationship 

between each of them and E will be always the same (this is the case of the observations of Y1, Y2 and Y3 

in periods 4 and 5 shown in Panel B of Table 1). On the other hand, when Yi and Yj are discordant, E will 

be necessarily concordant with one latent variable and discordant with the other one. Therefore if E is 

concordant with Yi (Yj) when the latent variables of loans i and j are discordant, E must be concordant 

with Yj (Yi) in another period when the latent variables are discordant. 

 

4.3.2 Possible values of the rank correlation between each latent variable and the economic factor 

Panel C (Table 1) represents the only case in which ij  (rank correlation for each pair of latent variables 

Yi and Yj) implies a single value of YE  (rank correlation related to each Y and E), i.e. when ij = -1. Since 

Yi and Yj present a completely inverse behavior, all pairs in the first two columns are discordant. In this 

scenario, the condition cEi = cEj  will be met only if E is concordant with Yi  in half of the observations and 

concordant with Yj in the other half such that cEi = cEj = 0.5 N. Recalling that c + d = N, we have that dEi = 

dEj = 0.5 N and the Kendall’s tau between E and the latent variable of each obligor (i and j) will be: 

 

0
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So, when ij  = -1, we know for sure that, given the assumption of equal dependence between each latent 

variable and the single economic factor,  YE  = 0. 

Nonetheless, in practice, this special case ( ij  = -1) is not compatible with pools of more than two assets 

and no other value of ij  can be mapped to a unique value of YE . Panel D in Table 1 shows the highest 

rank correlation between the latent variables ( ij  = 1) where all pairs of arrows in the first two columns 

point in the same direction and therefore any combination of directions in E will comply with the 

requirement cEi = cEj (the third column of Panel D is an example of this situation). This means that if the 

latent variables present the strongest possible connection ( ij  = 1), any value for YE  is possible. 

Fortunately, credit losses tend not to be perfectly correlated and this reduce the range of feasible values of 

YE  when ij  can be estimated (or assumed based on some reasonable presumptions). Whenever ij  is 

different from -1 and 1, there will be concordant and discordant pairs of Yi and Yj. Panels E and F in Table 

1 help us to identify the minimum and maximum possible YE  (i.e. its bounds) for a given ij  in that 
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interval. Both panels symbolize pairs (Yi,Yj) with identical observations: the first two lines are concordant 

and the others are discordant (the directions of the arrows are just illustrative). 

From [12], it is clear that the minimum 
YE  in this scenario will happen when cEi (=cEj) is minimum and 

this happens if E is discordant with the concordant pairs (Yi,Yj); see the first two lines of Yi and Yj in Panel 

E where the arrows of the economic factor E have the opposite direction of the respective arrows of Yi and 

Yj. Furthermore, as explained above, when the pairs are discordant, E must be concordant with each Y  

half of the observations (represented in the last four lines in Panel E). From this, we deduce that the 

minimum number of concordant pairs between the economic factor E and a latent variable is 

jiEjEi dcc 5.0minmin  , that is, half of the observations presenting discordant pairs (Yi,Yj). The 

equivalent discordant pairs will be therefore 
jiijEjEi dcdd 5.0minmin  . In Panel E, 

min

Eic , for instance, 

is equal to  2)4(5.05.0 
jid  (which refers to the third and the fourth lines where Yi and E are 

concordant) and 4)4(5.025.0min 
jiijEi dcd  (concerning the first, the second, the fifth and 

the sixth lines). From this, it follows that the minimum Kendall’s tau between E and each latent variable 

(Yi, for example) can be associated to the concordant and discordant pairs that generated the calculable 

Kendall’s tau between Yi and Yj: 
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The maximum 
YE  will happen when cEi  (=cEj) is maximum and this occurs when E is concordant with 

the concordant pairs (Yi,Yj) as demonstrated in the first two lines of Panel F in Table 1. As before, E must 

be concordant with each Y  half of the discordant observations (see the last four lines in Panel F). In these 

circumstances, the highest number of concordant pairs involving E and a latent variable is 

jiijEjEi dccc 5.0maxmax   and the discordant pairs totalize 
jiEjEi ddd 5.0maxmax  . In Panel F, 

4)4(5.025.02max 
jiEi dc  (the first four lines in Panel F) and 

jiEi dd 5.0max
 

2)4(5.0   (the last two lines). The maximum Kendall’s tau relating E to each Y  expressed in terms 

of concordant and discordant  pairs between the latent variables is (taking loan i as an example): 
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Combining [14], where c + d = N, with [15] and [16], these two expressions can be rewritten respectively 

as
8
: 
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This means that, when 11  ij , the rank correlation 
YE  between the economic factor E and 

each latent variable Y is always in the range whose limits are the values displayed in [17] and [18], i.e.: 

 

]2/)1(,2/))1([(  ijijYE   

 

such that the smaller ij  is, the shorter the range of YE  is
9
. Note that [17] and [18] are also compatible 

with the extreme cases mentioned earlier ( ij  = -1 and ij  = 1). Another interesting example is the 

possible range of YE  when the loan defaults (i.e. the latent variables) are independent. When ij  = 0, 

YE  may vary between -0.5 and 0.5. In other words, the independence between Yi and Yj does not imply 

that each latent variable (and consequently, the probability of default of each debtor) is free from the 

influence of the economy. 

We emphasize that this is a crucial difference between the traditional method and our suggested approach: 

whilst the former has a single value for the relationship between Y and E (equality [7]), the latter is based 

on an interval (expression [19]). 

 

  

                                                           
8
 Equivalent expressions can be found if we use [13] to derive 

min

YE  and 
max

YE  with respect to the discordant pairs. 

9
 In conformity with what was said before, the shortest range is associated with ij  = -1 (the smallest possible rank 

correlation between the latent variables) which results in a single value for YE  (= 0). Recall that YE  is the same 

for both loans i and j due to the assumption of homogeneous dependence. 

[ 17 ] 

[ 18 ] 

[ 19 ] 
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4.3.3 Relationship between the latent variables’ rank correlation and copulas’ parameters 

In principle, any value in the interval [ 2/))1((  ij , 2/)1( ij ] could be used to estimate the 

parameter of the copula that expresses the dependence between the economic factor and the latent 

variable at the portfolio level. This is the case of the Student t Copula. However, in the particular case of 

the Clayton Copula, the parameter 
YE  is in the interval (0,∞). Thus, according to [10], [19] becomes: 

 

]2/)1(,0(  ijYE   

 

In a prudential regulatory context, a reasonable choice for YE  seems to be its highest value 

(corresponding to 2/)1( ij ) since it denotes the strongest connection across the latent variables and 

represents the highest possible dependence among credit losses (so, the capital required will be estimated 

according to the worst scenario given the observed rank correlation between defaults). However this 

alternative may lead to the overestimation of the regulatory capital and therefore some intermediary 

values of 
YE  can be employed at the discretion of regulators and practitioners. Given the two 

aforementioned continuous intervals, we initially test three levels of the rank correlation between each 

latent variable and the economic factor: the YE  correspondent to the first tercile (tertile) in the interval
10

, 

the average YE  and the maximum YE . In the instance of the Clayton and the Student t Copulas, 

considering [20] and [19], these three levels are respectively given by: 
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If the Clayton Copula is adopted to represent the dependence between the economic factor and the credit 

losses, the capital required to cover unexpected losses with higher dependence in downturns will be 

                                                           
10

 That is, if we divide the continuous interval into three subintervals, this YE  will be the point between the first 

and the second subintervals. For example, if the range of YE  is [-0.6,0.6], the first tercile will be -0.2. 

[ 20 ] 

[ 21 ] 

[ 22 ] 



17 
 

estimated by means of [8] where the parameter 
YE  will be defined in accordance with the level of the 

rank correlation between credit losses and the economic factor. The three levels presented in [21] 

combined with [10] give the following expressions for 
YE : 
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When the Student t Copula is used, the extreme losses are estimated via [9] and the three levels of 
YE  are 

(by combining [11] and [22]): 
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Bear in mind that ij  is the observable (computable) rank correlation (Kendall’s tau) across probabilities 

of default (default rates) and can be determined in the same way the linear correlation in [6] was defined 

by several credit classes in Basel Accords. 

 

5. COMPARISON BETWEEN THE PERFORMANCE OF THE BASEL METHOD AND THE 

PERFORMANCE OF THE SUGGESTED APPROACH 

5.1 Data and test setup 

We use aggregate data on (non-seasonally adjusted) default rates regarding all American commercial 

banks to compare the performance of the traditional formula [6] with the performance of the method 

based on the Clayton and the Student t Copulas (formulas [8] and [9], respectively). We consider three 

credit classes: mortgages, credit cards and corporate loans; the first comprises the period 1991Q1-2011Q2 

and the last two pertain to 1985Q1-2011Q2. The data was downloaded from the Federal Reserve 

Economic Data (FRED) compiled by the Federal Reserve Bank of St. Louis
11

. We assume that this 

aggregate data represents the default rates of “average” (typical) American banks. The evolution of the 

default rates is presented in Figure 3.  

 

[Insert Figure 3 here] 

 

                                                           
11

 Available at http://research.stlouisfed.org/fred2/categories/23. 

[ 23 ] 

[ 24 ] 



18 
 

In this section, we check whether models based on copulas that express left-tail dependence could predict 

the high losses observed in the period 2009Q1-2010Q2 better than the Basel formula did
12

. Since our data 

is net of recoveries, we multiply each of the formulas related to the extreme losses ([6], [8] and [9]) by the 

loss given default (LGD) which, in turn, is calibrated according to other empirical studies. As for 

corporate loans, the average LGD according to the values found in some prior studies
13

 is 30.57%. Among 

these papers, only Grossman et al. (1997) present specific results for mortgages (LGD = 42% based on the 

present value of the repayments and LGD = 29.8% based on the nominal value of the loans). There is no 

particular investigation for credit cards and, in this case, we use the average LGD (34.95%) for unsecured 

bank loans estimated by Carty and Lieberman (1997) and Emery (2003). So, the LGD used in our tests are 

35%, 40% and 30% for credit cards, mortgages and corporate loans, respectively.  

Given that we are using aggregate data and do not have enough information to estimate the rank 

correlation ij  across the latent variables (and then to calculate the parameters 
YE  of the copulas that 

link the single economic factor and each latent variable by means of formulas [23] and [24]), we use the 

correlation coefficients ( ij  in our notation) empirically estimated by the Basel Committee on Banking 

Supervision (see BCBS 2005) to find the correspondent rank correlation (Kendall’s tau, ij ) between the 

latent variables i and j that represents the rank correlation of all pairs of latent variables in a portfolio. The 

only association between ρ and τ refers to bivariate normal distributions (see Kruskal 1958): 

 




 arcsin
2

  

 

So, we use this relationship to estimate ij  from the values of ij  given in Basel Accords (0.04 for credit 

cards, 0.15 for mortgages and a function of the probability of default for corporate debt
14

). This is clearly 

a limitation of our study since we had previously relaxed the assumption of normality. Nonetheless this 

limitation is restricted to the estimation of ij  without which we would not be able to empirically 

compare the Basel and the Copula methods. Moreover this simplification in our approach can be easily 

overcome by regulators and practitioners who have enough data to estimate the rank correlation across the 

                                                           
12

 The last four quarters in our data set are neglected due to the considerable decrease in the default rates after 

2010Q2. 
13

 Asarnow and Edwards (1995), Carty and Lieberman (1997), Grossman et al. (1997), Eales and Bosworth (1998), 

Felsovalyi and Hurt (1998), Emery (2003), Altman (2004), Araten (2004), Franks et al. (2004), Schuermann (2004), 

Dermine and Neto de Carvalho (2006), and Grunert (2009). 
14

 ρ is also a function of obligors’ size (annual sales) and the estimates presented ahead are based on the maximum 

size stipulated in Basel (€50 million). We tested other sizes (results not displayed) but the relative performance of 

the methods compared was virtually the same.   

[ 25 ] 
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latent variables (that is, those agents can estimate ij , for example, in the same way the Basel Committee 

on Banking Supervision estimated the values of ij  defined in the second Basel Accord). 

We initially assume we are in 2008Q4 and we therefore use the default rates up to that quarter to estimate 

the average (historical) probability of default (PD). Hence, the first estimate for each credit class refers to 

2009Q1. Then, for each subsequent period, we update the historical PD by including the periods between 

2008Q4 and the period immediately before the period analyzed. For instance, when estimating the 

extreme losses in 2010Q1, we calculated the historical PD as the average of the default rates from the first 

period in our sample until 2009Q4. 

 

5.2 Results 

The results are shown in Table 2 where the potential extreme losses are estimated via the conventional 

(Basel) method (expression [6] * LGD) and the Clayton Copula method (expression [8] * LGD). Each 

panel pertains to a loan category (credit cards, mortgages, and corporate). The second column displays the 

default rates observed in the periods of higher default levels (2009Q1-2010Q2). The estimates based on 

the Basel formula with the usual confidence (99.9%) are in the third column. In the fourth column, we 

raise the confidence in the Basel formula (99.99%) to test if we can improve the performance of the Basel 

method when it leads to the underestimation of losses. Estimates related to the Clayton Copula with 

confidence of 99% are in the fifth, sixth and the seventh columns (following the three levels of 
YE  

mentioned in [23]). The best estimate for each period and credit class is highlighted in boldface. 

By calculating the absolute difference between the observed default rates and the estimates, we can see 

that, for credit cards (Panel A), the formula derived from the Clayton Copula with parameter YE  related 

to the first tercile in the YE  range yielded the best results for the period 2009Q1-2009Q4 (exactly when 

the default rates reached the highest level) besides outperforming the Basel formula (confidence 99.9%) 

in 2010Q1 while the Basel formula with the increased confidence 99.99% gave the best results for 

2010Q1-2010Q2. Note, however, that despite resulting in the closest values to the observed default rates, 

the Basel approach with confidence 99.99% underestimated the extreme losses in all quarters whereas the 

copula method presented slightly overestimated losses. 

Concerning mortgages (Panel B), the Basel method had its best performance since it gave the best 

estimates in four quarters (2009Q1-2009Q2 at the 99.99% confidence level and 2010Q1-2010Q2 at the 

99.9% confidence level). The Clayton Copula yielded the best approximations in 2009Q3 (with the 

average rank correlation in the interval of all possible YE ) and 2009Q4 (with the first tercile in the rank 

correlation interval). 
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As for corporate loans (Panel C), contrary to what could be expected, the conventional Basel formula 

(confidence 99.9%) overestimated the credit losses in the downturn period. This does not represent a 

concern for regulators and practitioners since the institutions that presented losses at the average 

(aggregate) level and calculated the potential extreme losses by means of the Basel formula would have 

(more than) enough capital to cover those losses. Nonetheless the estimates based on the Clayton Copula 

(with the first tercile in the 
YE  interval) were even better as they had the smallest difference from the 

observed default rates for the whole period 2009Q1-2010Q2 (i.e. the overestimation from the copula 

method was lower than that resulted from the Basel formula).  

Table 3 presents the comparison between results from the Basel (expression [6] * LGD) and the Student t 

Copula
15

 (expression [9] * LGD) approaches. The performance of the Student t Copula is quite similar to 

the performance of the Clayton Copula shown in Table 2. In Panel A (credit cards), the estimates derived 

from the Student t Copula (at the 99% confidence level) with parameter based on the first tercile of 
YE  

were the best approximation of the observed extreme losses in five periods (2009Q1-2010Q1). The Basel 

formula with confidence 99.99% gave the best result in 2010Q2. With regard to mortgages (Panel B), the 

copula method did not yield the best estimate in any of the periods analyzed. The results for corporate 

obligations (Panel C) were essentially the same as those displayed in Table 2 for this credit category: 

albeit the Basel formula did not result in insufficient capital to cover losses in the adverse scenarios 

considered in this study, the estimates from the copula approach with parameter inferred from the first 

tercile of 
YE  were closer to the observed losses and therefore avoided excessively unnecessary capital. 

Thus, methods derived from the Clayton and the Student t Copulas with parameter YE  based on the first 

tercile of YE  would be better alternatives than the Basel formula (even with increased confidence 

99.99%) to predict the unusually high losses observed in credit card and corporate loan portfolios in the 

period 2009Q1-2010Q2.   

We tested other levels for the rank correlation YE  but, in general, none of them outperformed the first 

tercile (which was the level that yielded the best results for the copula approaches in Tables 2 and 3). 

 

6.  CONCLUSIONS 

We show that the formula used in Basel Accord to estimate unexpected credit losses corresponds to a 

conditional distribution derived from the Gaussian Copula. Since this copula family does not capture tail 

dependence, the model largely used by regulators may misestimate the capital necessary to face credit 

                                                           
15

 With the minimum degree of freedom (v = 1) to assume the fattest possible tails. Other values of v can also be 

considered by practitioners.   
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losses in downturns (when the connection across defaults tends to be more intense than in periods of 

normal economic activity). 

Based on this finding, we propose two models that keep the basic idea of the current method (namely, the 

first derivative of a copula) but we use different conditional distributions able to detect possible tail 

dependence among losses in adverse conditions. The suggested approach is flexible and can capture 

several dependence shapes since it can be adapted to a number of differentiable copulas. Its 

implementation is as simple as the implementation of the existent model and tends to identify potential 

higher association between losses in downturns better than the traditional approach does.  

There are typically many possible rank correlations between the economic factor and the latent variable of 

each loan (called 
YE  in this paper) for each rank correlation across loans (named here as ij ). If the 

losses have small rank correlation, the models proposed get more accurate because the range of possible 

associations between the economic factor and each latent variable tends to be shorter than intervals 

resulted from high rank correlation between the latent variables. So, the variation of potential outcomes is 

reduced for low rank correlations across defaults and we move towards a unique value of 
YE . 

It is possible that many trials to insert copulas in this Basel framework have failed due to the lack of a link 

between the dependence measure we need )( YE  and the dependence we can infer from empirical data 

)( ij . Therefore the relationship between those two measures found in this study will certainly contribute 

to the application of copulas to many models dealing with dependence among variables impacted by 

systematic (unobservable) factors. 

We test the proposed models with data pertaining to aggregate credit losses in all American commercial 

banks. Our results reveal that the copula methods yielded better estimates of extreme losses for credit 

cards (for which the Basel formula underestimates losses and the copula approaches typically present 

closer estimates slightly above the observed losses) and corporate loans (for which both approaches 

overestimate the losses but the copula one give results closer to the observed losses). On the other hand, 

in the case of mortgage portfolios, the estimates founded on the Basel formula are more precise than the 

estimates based on copulas.  

The different performance of the Basel formula with regard to those three credit classes might be 

consequence of the distinct correlation coefficient specified in Basel Accords for each segment. If this is 

the case, regulators should rethink the calibration of the correlation coefficients (especially concerning 

credit cards for which Basel formula presented the worst results in terms of underestimation). So, this 

could be an alternative to keep the use of the Basel formula (based on assumptions of normality) instead 

of adopting copula methods. The comparison between these two possibilities is beyond the scope of this 
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paper and is left as a future exercise since it demands more data to estimate the linear correlation among 

defaults.  

Another topic for further investigation is to estimate ij  from empirical data sets rather than to 

approximate it by using the relationship between ρ and  in bivariate normal distributions (as we did by 

means of expression [25]). Moreover, our suggestions can be extended by regulators and practitioners 

who have access to massive data on credit losses so that the dependence across defaults can be 

empirically found and the first derivative of the resultant copulas (if it exists) should be used to give more 

realistic estimates of unexpected losses according to the properties of each portfolio. 

Finally, we recognize that the approach suggested in this paper is static in the sense that a single copula 

family is used regardless of the economic scenario. Although most of our results are better than estimates 

from the Basel formula for the six quarters considered, estimations regarding the period pre-2009 (not 

displayed here) show that the Clayton and the Student t copulas lead to an (excessive) overestimation of 

losses when the economy is booming. So, the next challenge is to build a dynamic (regime-switch) model 

where different copula families can be chosen over time according to, for example, some macroeconomic 

indicators. 
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TABLE 1: Representation of the movements of latent variables  

and one systematic factor
 

 

Panel A 

A general case 

Period Y1 Y2 Y3 … YL E 

1    …   
2    …   
3    …   
… … … … … … … 

N    …   

 

Panel B 

Example of homogeneous dependence between each Yi and E 

Period Y1 Y2 Y3 E 

1     
2     
3     
4     or  

5     or  

 

Panel C 

ij = -1 

 Panel D 

ij = 1 

Yi Yj E  Yi Yj E 

       

       

       
… … …  … … … 

       
 

Panel E 

11  ij  

 Panel F 

11  ij  

Yi Yj E  Yi Yj E 

       

       

       

       

       

       
 

Yi, for 1  i  L, is the latent variable associated to the i
th
 loan. E is the systematic 

(economic) factor. ij  is the rank correlation (Kendall’s tau) between Yi and Yj.  and  

indicate the direction of movements of the variables (up and down, respectively). 
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TABLE 2: Comparison between extreme credit losses estimated via Basel method  

and the Clayton Copula 

Year/ 

Quarter 

Observed 

extreme 

losses  

Basel estimate 

confidence = 

99.9%  

Basel estimate 

confidence = 

99.99%  

Copula 

estimate with 

the first tercile 

of 
YE *  

Copula 

estimate with 

average 
YE *  

Copula 

estimate with 

maximum 

YE *  

 

Panel A: Credit Cards 

2009Q1 0.1010 0.0467 0.0571 0.1124 0.1779 0.3284 

2009Q2 0.1012 0.0472 0.0576 0.1133 0.1789 0.3289 

2009Q3 0.1016 0.0476 0.0582 0.1140 0.1800 0.3295 

2009Q4 0.1097 0.0481 0.0587 0.1148 0.1810 0.3300 

2010Q1 0.0855 0.0486 0.0593 0.1157 0.1821 0.3305 

2010Q2 0.0770 0.0489 0.0596 0.1162 0.1828 0.3308 

 

Panel B: Mortgages 

2009Q1 0.0243 0.0169 0.0288 0.0164 0.0192 0.0040 

2009Q2 0.0285 0.0182 0.0308 0.0181 0.0219 0.0057 

2009Q3 0.0245 0.0198 0.0331 0.0201 0.0251 0.0080 

2009Q4 0.0214 0.0210 0.0349 0.0217 0.0277 0.0104 

2010Q1 0.0191 0.0220 0.0364 0.0230 0.0299 0.0126 

2010Q2 0.0199 0.0228 0.0376 0.0241 0.0317 0.0148 

 

Panel C: Corporate Loans 

2009Q1 0.0254 0.0393 0.0627 0.0364 0.0561 0.0872 

2009Q2 0.0265 0.0397 0.0632 0.0370 0.0571 0.0907 

2009Q3 0.0189 0.0401 0.0637 0.0375 0.0582 0.0945 

2009Q4 0.0176 0.0403 0.0639 0.0378 0.0587 0.0965 

2010Q1 0.0172 0.0405 0.0641 0.0381 0.0592 0.0983 

2010Q2 0.0144 0.0406 0.0643 0.0383 0.0597 0.0999 

* YE stands for the rank correlation (Kendall’s tau) between the latent variable of each obligor and the 

economic factor. 

The best estimate (which presents the smallest difference from the observed extreme losses) in each 

period are highlighted in boldface. 
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TABLE 3: Comparison between extreme credit losses estimated via Basel method  

and the Student t Copula 

Year/ 

Quarter 

Observed 

extreme 

losses  

Basel estimate 

confidence = 

99.9%  

Basel estimate 

confidence = 

99.99%  

Copula 

estimate with 

the first tercile 

of 
YE * 

Copula 

estimate with 

average 
YE *  

Copula 

estimate with 

maximum 

YE *  

 

Panel A: Credit Cards 

2009Q1 0.1010 0.0467 0.0571 0.0956 0.1365 0.2767 

2009Q2 0.1012 0.0472 0.0576 0.0960 0.1370 0.2771 

2009Q3 0.1016 0.0476 0.0582 0.0964 0.1374 0.2775 

2009Q4 0.1097 0.0481 0.0587 0.0967 0.1379 0.2779 

2010Q1 0.0855 0.0486 0.0593 0.0971 0.1383 0.2783 

2010Q2 0.0770 0.0489 0.0596 0.0973 0.1386 0.2785 

 

Panel B: Mortgages 

2009Q1 0.0243 0.0169 0.0288 0.0054 0.0067 0.0045 

2009Q2 0.0285 0.0182 0.0308 0.0065 0.0081 0.0058 

2009Q3 0.0245 0.0198 0.0331 0.0078 0.0100 0.0076 

2009Q4 0.0214 0.0210 0.0349 0.0090 0.0116 0.0094 

2010Q1 0.0191 0.0220 0.0364 0.0100 0.0130 0.0110 

2010Q2 0.0199 0.0228 0.0376 0.0108 0.0142 0.0125 

 

Panel C: Corporate Loans 

2009Q1 0.0254 0.0393 0.0627 0.0250 0.0368 0.0733 

2009Q2 0.0265 0.0397 0.0632 0.0256 0.0377 0.0767 

2009Q3 0.0189 0.0401 0.0637 0.0263 0.0387 0.0802 

2009Q4 0.0176 0.0403 0.0639 0.0266 0.0393 0.0822 

2010Q1 0.0172 0.0405 0.0641 0.0269 0.0397 0.0838 

2010Q2 0.0144 0.0406 0.0643 0.0272 0.0401 0.0854 

* YE stands for the rank correlation (Kendall’s tau) between the latent variable of each obligor and the 

economic factor. 

The best estimate (which presents the smallest difference from the observed extreme losses) in each 

period are highlighted in boldface. 
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Yi Yj 

Yi 

 

 

 

FIGURE 1: Two possible representations of the stronger connection across small values of the latent 

variables (Yi and Yj) in downturns. 

 

 

 

FIGURE 2: A representation of the stronger connection across small values of each latent variable (Yi on 

the left and Yj on the right) and the economic status. When E is reduced (e*), indicating an unfavorable 

scenario, both Yi and Yj tend to be small. When E increases (e**), denoting higher economic activity, 

different levels of the latent variables are associated.  

Yi 

Yj 

E E e* e* e**

* 

e**

* 

Yj 

Panel A Panel B 
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FIGURE 3: Evolution of default rates in American commercial banks (1985Q1-2011Q2). 


