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Multifractality and Value at Risk Forecasting of
Exchange Rates

Abstract
The empirical properties of risky asset returns typically reveal autocorrela-
tion functions that decline rapidly and are statistically insignificant beyond
a few lags. However, the autocorrelation functions of squares and absolute
values of returns, typically decline slowly, and in fact may persist for many
years. Assuming the return series are also stationary, then this behavior
indicates that the series is not independent, and is instead either short-
range dependent, or in some cases also long range dependent. These scaling
properties are well known by financial market practitioners, although they
are commonly ignored for modeling convenience.

This paper contributes to the empirical literature that investigates the
risk scaling properties of financial asset returns. We do so by investigating
the presence of complex, nonlinear behavior in the EUR/USD spot for-
eign exchange rate, which is the most important currency pair traded in
over-the-counter (OTC) markets. Our findings demonstrate a strong case
against the use of models that accommodate multifractality and instead
favor those that address fat-tailed, or leptokurtic, features present in these
distributions.

Our findings also provide additional insights into the scaling properties
of the spot returns. For example, the scaling functions are initially linear,
although ultimately concave, which is consistent with returns’ distributions
of infinite low order moments. This result would support the need for
modeling that addresses multifractality, although modifying commonly
used models cannot readily meet these requirements. We then present
evidence of a class of models that can incorporate the empirically observed
features.

Keywords: Exchange Rates, Forecasting, High Frequency Exchange Rates,
Modeling Asset Returns, Multifractality, Value at Risk, VaR.

JEL Classification: C22



The multifractal model of asset returns (MMAR), as introduced by
Mandelbrot et al. (1997), covers fat-tailed return distributions, long-
range dependence in different powers of returns and scale inconsis-
tency. Amongst the standard empirical properties of risky asset re-
turns much more can be inferred from the scaling properties of the
returns. We find the empirical scaling functions of spot EUR/USD
exchange rates are initially linear and ultimately concave, which is
strongly suggestive of returns distributions with infinite low order
moments, or alternatively that multifractal behavior is a necessary
modeling requirement. In this paper we derive a modified MMAR
approach, which models trading time by a series of volume ticks and
allows the MMAR to be used for out-of-sample Value at Risk (VaR)
forecasting.

1 Introduction

A widely used approach to risk management in financial intermediaries is a

statistical procedure described as Value at Risk (VaR). In general, this approach

estimates the worst expected loss over a target horizon that will not be exceeded

with a given level of confidence. Importantly, VaR is used by regulators to

determine the appropriate amount of risk capital needed by the intermediary to

avoid default arising from adverse movements in asset prices. In addition, it can

be used by management to support decisions involving the setting of position

limits and performance evaluation. Typically VaR is calculated based on daily

return data, although doing so ignores the risk –and potential losses– associated

with the liquidation of positions due to adverse intraday price movements.

Nonetheless, an important caveat to VaR estimation is the well-known fact
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that financial assets returns (typically estimated as the interperiod change of

the logarithm of the price) do not display ideal statistical properties. Instead,

they exhibit multifractal or multiscaling features that are characterized by a

special form of time-invariance, which combines fat-tailed returns (leptokur-

tosis) with long memory.1 The presence of these features in financial time

series demonstrates the criticality of adopting more accurate risk measures.

Importantly, failure to do so may result in standard risk measurement and

management techniques misrepresenting the appropriate level of risk capital

required to support an intermediary during a crisis event, which in the event

of failure could lead to broader system wide consequences.

The main contribution of this paper is that we demonstrate a more accurate

intra-day risk measure that better forecasts these potential losses, thereby pro-

viding financial market practitioners and regulators with a better determination

of the required level of risk capital. To do so, we employ a modified version of

the multifractal model of asset returns (MMAR) that was originally proposed by

Mandelbrot et al. (1997). This model has the benefit of addressing the complex

properties of financial price returns by estimating various degrees of long memory

at different powers, and importantly is able to accommodate the presence of fat-
1The empirical evidence is extensive. For example, Fisher and Calvet (2002) find

multifractality in a (Deutsche Mark) DMK/USD high frequency series and Xu and Gençay
(2003) also prove 5-minute USD/DMK returns are multifractal. Eisler and Kertész (2004)
report multiscaling behavior for a high frequency Deutscher Aktien Index (DAX) stock series
and high frequency observations of the 200 most liquid stocks at New York Stock Exchange
(NYSE). A stationary process exhibits long memory, when its autocorrelation function behaves
asymptotically as a power law. For alternative high frequency VaR approaches, see Sun et al.
(2009).
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tails (or leptokurtosis).2

Alternate approaches, such as fractionally integrated GARCH (Generalized

autoregressive conditional heteroskedasticity) models (or FIGARCH) have the

same decay rate for all moments and are not scale-consistent. Consequently,

Fisher and Calvet (2004), as well as Lux (2008) find MMAR outperform both

GARCH and FIGARCH models applied to foreign exchange rate series, although

Fillol (2003) shows that MMAR is a better model for replicating the scaling

properties observed in the French CAC-40 (Cotation Assisté en Continu) stock

series.

In a recent study Fleming and Kirby (2011) find a strong correlation between

the innovations to volume and volatility and suggest that volume could be utilised

to improve risk prediction. Given this conclusion, and following Clark (1973),

we model trading time by a series of trading volume ticks and provide a mod-

ified MMAR approach for out-of-sample VaR forecasting. These modifications

overcome many of the limitations of the previous multifractal models such as

their combinatorial nature and their restriction to a bounded interval. Note

that Fisher and Calvet (2001) overcome these shortcomings by introducing a

Markov-switching multifractal model, while Lux (2008) provides an alternative

generalized method.

In the present paper we apply MMAR to the VaR forecasting of the EUR/USD
2See for example, Liu and Lux (2005). Different degrees of long memory in various powers

of returns are a stylized fact of financial returns. For example, see Ding et al. (1993), Lobato
and Savin (1998) and Cont (2001).
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spot exchange rate. The EUR/USD spot exchange rate is the major currency

pair traded in the over-the-counter spot foreign exchange market, with daily

turnover now estimated to be excess of US$1 trillion (BIS (2010)). In order

to test the forecasting ability of our novel VaR approach, we study the out-

of-sample accuracy of VaR predictions for both 12-hour and daily (24-hour)

forecast horizons. While these forecast periods are somewhat arbitrary they are

consistent with the trading activities expected of global financial intermediaries

with a subsidiary, or branch, always open during the 24-hour trading day.

One additional novelty to our approach is that we use high frequency ob-

servations. Our data consists of round-the-clock EUR/USD spot exchange rate

prices quoted by market participants on the Reuters trading platform during the

period January 5, 2006 to December 31, 2007. These prices are bundled into 5-

minute time stamped intervals with the spot price and the trading ticks recorded.

We find that the EUR/USD returns are multifractal, with the moments showing

different scaling exponents. Our novel MMAR approach is then compared with

forecasts based on historical simulation and a benchmark GARCH approach.

These comparisons show that the MMAR approach is the only model, which

produces admissible VaR forecasts for the 12-hour forecast horizon. However,

for the daily horizon, we find the MMAR outperforms all alternatives.

The paper is organized as follows. Section 2 contains a brief review of the

multifractality literature and introduces our modified version of the multifractal

model of asset returns. In Section 3 we present the multiple-period VaR forecast-
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ing concept for our MMAR model and outline competing standard VaR models.

Section 4 contains an empirical study of the various models’ forecasting ability

using the EUR/USD foreign exchange rate series. Finally, Section 5 concludes.

2 Multifractal Modeling of FX Returns

We model foreign exchange (FX) returns using a modified version of the multi-

fractal model of asset returns (MMAR). Before our MMAR approach is intro-

duced, we provide a brief overreview of the multifractality concept.

2.1 Multifractality

Mandelbrot et al. (1997) define a multifractal process as one that possesses a

nonlinear scaling function. By definition, a linear scaling function is therefore a

feature of unifractal series. However, uniscaling processes do not model returns

appropriately, as the majority of financial data sets do not exhibit linear scaling

functions (see for example, Cont (2001), Fisher and Calvet (2002) and Xu and

Gençay (2003)).

In the following, we formally define multifractal processes and introduce the

scaling and partition functions. The partition function is necessary to calculate

the scaling function.

Definition 2.1 A time series process {Yt}1≤t≤T is called multifractal, if it has
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stationary increments and satisfies

E
(
|Yt,h − Yt|q

)
= c(q)hτ(q)+1, (1)

for all 1 ≤ h ≤ T , and 0 ≤ q ≤ Q. The scaling function τ(q) and the prefactor

c(q) are both deterministic functions of q.

The scaling function τ(q) takes into account the influence of the time h on the

moments q. For q = 0 all scaling functions have the same intercept τ(0) = −1.

According to Definition 2.1, unifractal processes like Brownian motion (BM) and

fractional Brownian motion (FBM) have linear scaling functions. The scaling law

of BM is

τBM(q) =
q

2
− 1, (2)

and for FBM

τFBM(q) = qH − 1, (3)

for 0 < H < 1.

Fisher and Calvet (2002) propose the following regression model to calculate

the scaling function τ(q):

logS(q, h) = τ(q) log h, (4)

where S(q, h) denotes the partition function. The partition function S(q, h) of

a time series process {Yt}1≤t≤T is defined for each moment q and obtained by
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partitioning the series into N = bT/hc non overlapping subintervals of length

h ∈ [1, T ]:

S(q, h) =
N−1∑
i=0

|Yi·h+h − Yi·h|q. (5)

The partition function is an indicator of the stability of the moments depending

on the time horizon.

2.2 Multifractal Model of Asset Returns

We now formalize the construction of the MMAR, which models FX returns

{Rt}1≤t≤T by compounding a FBM with a multifractal trading time. The FX

return is defined as Rt ≡ logXt − logXt−1, where Xt denotes a FX rate.

Assumption 2.1 The MMAR assumes that the FX return process {Rt}1≤t≤T

follows

Rt = B
(H)
t [θt], (6)

where B(H)
t is a FBM with self-affinity index 0 < H < 1 and θt is a multifractal

trading time. B(H)
t [θt] is a compound process.

The multifractal trading time controls the tails of the process {B(H)
t [θt]}1≤t≤T .

In different periods of time, the trading can be slower or faster. As the FX return

process is assumed to follow B
(H)
t [θt], smaller or larger values of θt correspond to

smaller and larger volatility, respectively (Eisler and Kertész (2004)).
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The most important feature of FBM as discussed in Mandelbrot and van Ness

(1968) is that FBM is able to model different degrees of persistence. For H =

0.5, FBM is ordinary BM with independent and identically distributed (i.i.d.)

increments. Yet, B(H)
t is antipersistent when 0 < H < 0.5 and displays long

memory for 0.5 < H < 1.

Additionally, we impose the following assumptions:

Assumption 2.2 The processes {B(H)
t }1≤t≤T and {θt}1≤t≤T are independent.

Assumption 2.3 The multifractal trading time θt is given by the normalized

volume ticks V t,

V t =
Vt∑T
t=1(Vt)

, (7)

where Vt ≥ 0 denotes the number of volume ticks at time t. It is assumed that

V t is multifractal as given by the scaling law in equation (1).

In our setting θt is not a virtual trading time, but reflects the normalized

number of trades that occur. The motivation for this method is twofold. First,

Ma (2005) studies stock trading time and finds that stock trading time confirms

the multifractal trading time hypothesis suggested by Mandelbrot et al. (1997).

Second, the actual volume ticks reflect the behavior of the market participants

more accurately than a virtual trading time. The use of volume ticks is an

innovation compared with previous MMAR approaches. For example, former

MMAR approaches model θt by log-normal or Poisson cascade processes (Fisher

and Calvet (2001)).
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Given Assumptions 2.1, 2.2, and 2.3, we use a method based on the factor-

ization of the autocovariance matrix, K, to simulate sample paths of B(H)
t [θt] at

times 1 ≤ t ≤ T :

B
(H)
t [θt] =

[
gT × A

]
σ (8)

with

g ∼ N (0, 1) (9)

and

K = AAT , (10)

where K ∈ RT×T is a positive-definite matrix and g ∈ RT×1 is a vector of

standard Gaussian numbers, while σ is the average of the unconditional standard

deviations of Rt and V t. The symmetric matrix A ∈ RT×T is the square root of

the matrix K. The elements of the matrix K are

Ki,j =
1

2

(
Θ2H
t + Θ2H

s − |Θt −Θs|2H
)
, (11)

for each given time 1 ≤ s ≤ t ≤ T , where {Θt}1≤t≤T is the cumulative trading

time that increases with real time t,

Θt =
t∑
i=1

θi. (12)
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3 MMAR Market Risk Estimation

Given some probability 0 < α < 1, the Ft−1-measurable VaR for the h-period-

ahead time interval (t− 1, t+ h− 1], V aRα
t,h, is defined as

V aRα
t,h = − inf {r : Ft,h(r) ≥ α} , (13)

which yields P(Rt,h ≤ −V aRα
t,h|Ft−1) = α. The low-frequency FX return (or h-

period FX return), Rt,h = logXt+h−1− logXt−1, is given by Rt,h =
∑h

τ=1Rt+τ−1.

Ft,h(r) denotes the time-(t− 1) conditional distribution of the low frequency FX

return, i.e. Ft,h(r) = P(Rt,h ≤ r|Ft−1). We now present the VaR representation

for our modified MMAR approach.

To calculate the VaR, we simulate a total ofDMMAR sample pathsR(d)
t , ..., R

(d)
t

for 1 ≤ t ≤ T and 1 ≤ d ≤ D, where R
(d)
t is the simulated one-period

MMAR return, Rt, at time t in the dth sample. Since the MMAR creates a self-

affine return sample path, we derive the corresponding h-period MMAR return,

{R(d)
t,h}1≤t≤T , with

R
(d)
t,h = hHR

(d)
t , (14)

for h > 0 and 0 < H < 1. The conditional distribution of R(d)
t,h is given by

F
(d)
t,h (r(d)) = P

(
R

(d)
t,h ≤ r(d)|Ft−1

)
. (15)

From equation (15), we obtain D quantile estimates F (d)←
t,h (α). Given this, the
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multiple-period VaR is derived by the mean of the D quantile estimates:

V aRα
t,h = −

(
1

D

D∑
d=1

F
(d)←
t,h (α)

)
. (16)

4 Empirical Analysis

This section investigates the predictive performance of our MMAR VaR approach

and two alternative VaR models. We study the models’ performance using high

frequency foreign exchange data.

4.1 Dataset and Descriptive Statistics

The 5-minute round-the-clock EUR/USD series is obtained from the Reuters’

trading platform, and covers January 5, 2006, through to December 31, 2007, for

a total of 138,418 high frequency observations. The data is bundled into 5-minute

sequential time stamped intervals with the spot price and the ticks recorded. A

tick is a trade through the platform for the standard minimum amount of about

3-5 million euro. Since the highest frequency is 5-minutes (h = 1), one hour

corresponds to h = 12 and one day is equal to h = 288.3 Table 1 shows that with

an increasing sampling frequency unconditional volatility rises. Additionally,

one can clearly observe the declining kurtosis leading to approximately Gaussian

data. 5-minute EUR/USD returns are fat-tailed (compare also Figure 2) and
3For h = 1 the return sampled at the highest frequency is Rt,1 = Rt.
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highly short-term dependent since one can observe significant autocorrelation

of absolute EUR/USD returns. Yet, this effect declines, when the sampling

frequency increases.

[Insert Table 1 about here]

The EUR/USD returns at 5-minute frequency are illustrated in Figure 1.

In Figure 2 Quantile-Quantile (Q-Q) plots of the sample EUR/USD returns

for 5-minute and daily sampling are provided. In both panels the empirical

quantiles (points) are plotted against the theoretical quantiles of a normal dis-

tribution (straight line). If the two distributions are similar, the points of the

empirical distribution should lie on the line. The Q-Q plot shows that 5-minute

EUR/USD returns are fat-tailed. With an increasing sampling frequency (daily)

the EUR/USD returns are less tailed, but have still fatter tails than a normal

distribution.

[Insert Figure 1 about here]

[Insert Figure 2 about here]

Figure 3 illustrates 5-minute EUR/USD trading ticks Vt and the cumulative

trading time Θt.

[Insert Figure 3 about here]
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4.2 Evidence of Multifractality

Figure 4 presents EUR/USD return partition functions for moments 1 ≤ q ≤ 5

in the scaling region up to one week. The partition functions are plotted against

h using logarithmic scales.4 For q ∈ [1, 3] the lines are approximately linear.

Generally higher moments are more sensitive to deviations from scaling as they

capture information in the tails of Rt,h. The partition function for moments

q = 4 and q = 5 shows linear behavior up to log h = 3 which corresponds to a

time horizon of about 100 minutes.

[Insert Figure 4 about here]

Figure 5 illustrates estimated scaling functions of EUR/USD returns and

Brownian motion. The scaling function of ordinary Brownian motion (dashed

line) as defined in equation (2) is linear, which is typical for unifractal processes.

The scaling function of EUR/USD appears completely different; it is non-linear

which is a characteristic of a multifractal process (see Definition 2.1).

[Insert Figure 5 about here]

4.3 Out-of-Sample VaR Forecasts

Model Estimation

In order to examine out-of-sample performance, we calculate the 1% VaR from

January 6, 2006 to December 31, 2007 for 12-hour (h = 144) and daily (h =

4One week corresponds to 1.440 observations: log h = 7.27.
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288) forecast horizons. The matrix A which is the square root of the matrix

K is computed by the Cholesky decomposition and the self-affinity index H is

estimated using the variance of residuals approach of Peng et al. (1994). We use

D = 5, 000 MMAR sample paths to calculate multiple-period VaR. The VaR

results of our MMAR approach are compared to two alternatives.

First, instead of simulated multifractal return series, we use historical simu-

lation of EUR/USD returns. The multiple-period VaR based on this historical

simulation is:

V aRα
t,h = −

(√
hF←t (α)

)
, (17)

where F←t (α) denotes the empirical α-quantile of Rt.

Second, we also compare the VaR results of our MMAR approach to a VaR

model in the location-scale class. The multiple-period VaR based on GARCH is:

V aRα
t,h = −

(
µt,h + σt,h F

←(α)
)
, (18)

where F← is the inverse of the innovations distribution. The multiple-period

mean, µt,h, as well as the multiple-period volatility, σt,h, are determined by

the GARCH(1,1) model of Bollerslev (1986). Estimation of the GARCH(1,1)

model with skewed student-t innovations is carried out by a maximum likelihood

method.

All model parameters of our VaR models are calculated using a moving

window, which consists of 288 5-minute high frequency EUR/USD returns. The
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time-t VaR forecasts are updated every time h, which results in bT−288
h
c successive

VaR predictions.

VaR Forecast Results

The out-of-sample VaR forecast results are summarized in Table 2. We provide

the average value of the VaR estimates, V aR, and the empirical coverage rate, α̂.

We use the Christoffersen (1998) LR statistics for VaR performance evaluation.

Appendix A contains a detailed explanation.5

[Insert Table 2 about here]

We consider a violation of a backtesting statistic to have occured when a

corresponding p-value of the respective test statistic is below 5 percent. The

LRuc statistic tests for the correct violation level, which is α = 1% in our

setting. VaR forecasts may be correct on average, but produce violation clusters,

a phenomenon ignored by unconditional coverage. The LRind statistic tests

for independence of the VaR violations. The conditional coverage statistic,

LRcc, combines both concepts. We therefore consider it as our most important

backtesting statistic. The VaR predictions of the three models for the 12-hour

horizon from January 6, 2007 to December 31, 2008 are plotted in Figure 6.

The dash dotted line refers to the MMAR approach, the dashed line is historical
5All models are validated based on non-overlapping h-period EUR/USD returns in order

to provide independent out-of-sample tests.
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simulation and the solid line is the GARCH based VaR model. In the following,

we analyze the models’ performance in detail.

Unconditional Coverage versus Conditional Coverage

The unconditional coverage test indicates that for the 12-hour horizon of GARCH

and for all horizons of historical simulation, the predicted VaR exceeds the actual

loss levels. This leads to insufficient coverage of potential losses since the VaR

level is too low. Our MMAR approach passes all backtesting statistics for p-

values above 0.05. For both horizons, we find that our MMAR model achieves

better conditional coverage than historical simulation and the GARCH based

VaR. All models pass the independence test indicating that there is no severe

clustering of VaR violations over time. As a result, backtesting violations result

due to VaR predictions exceeding actual levels.

12-hour versus daily Forecast Horizon

Comparing the two forecast horizons, we find that historical simulation and

GARCH produce better VaR results (and therefore higher p-values of all back-

testing statistics) for the daily horizon. This is because returns sampled at a

higher frequency often obtain more extreme returns as lower frequency returns.

Our MMAR model has less problems with such an environment. First, the

MMAR is characterized by a special form of time-invariance, which combines

extreme returns with long memory (Fisher and Calvet (2002)). Second, our
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MMAR approach uses trading volume. This is important, as increased trading

activities can produce extreme returns.

The predicted VaR of GARCH does not violate any backtesting statistic

for the daily horizon. The MMAR performs best for the 12-hour horizon: We

find that the p-value of LRcc (which is 0.900) and the empirical violation level

α̂ = 1.04% both report excellent VaR forecasting. Concerning the daily horizon,

we report good backtesting results for the MMAR, but inferior to the 12-hour

horizon. To conclude, for both horizons, our MMAR model dominates the VaR

results of historical simulation and GARCH and never violates a backtesting

statistic.

[Insert Figure 6 about here]

4.4 Economic Implications

In the last section we discussed the VaR forecasting results from a statistical

point of view. Now, we present some economic implications of our results. Let’s

assume a bank takes 1 million euro in a long (bought) position against the US

dollar and intends to close it after 12 hours. On average, we expect the MMAR

to determine 9.800 euro as risk capital. The expected average risk capital of

historical simulation and GARCH based VaR would be 7.000 and 8.000 euro,

respectively. Given this and the empirical violation rate α̂ reported in Table

2, we find that the bank would be considerably undercapitalised with its long
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position when using historical simulation.6

A lack of regulatory capital can also affect stock price movements of banks.

Authorities like the the Federal Reserve (Fed) perform stress tests to check

whether banks are able to maintain a sufficient level of capital in the event

of extreme price movements. Banks using inefficient VaR models may lack

sufficient risk capital and therefore may face problems when these stress tests are

undertaken. It is not uncommon for a banks’ stock price to respond negatively

when the results are publicly disclosed. On the other hand, stock prices of banks

performing well in a stress test are likely to respond positively.

5 Conclusion

In this paper we address the need by financial intermediaries to provide more

accurate forecasts of intra-day VaR. Doing so is critical not just for regulatory

purposes but also for better internal risk management. One approach to solving

this difficult issue is to use a MMAR based VaR technique for risk prediction.

The MMAR as introduced by Mandelbrot et al. (1997) covers fat-tailed return

distributions, long-range dependence in different powers of returns and scale

inconsistency. We model trading time using a series of trading volume ticks and

provide a modified MMAR approach for out-of-sample VaR forecasting. The
6As the empirical violation rate α̂ of MMAR is roughly 1% which is the target rate, the risk

capital of MMAR is very close to the required risk capital. The other models have significantly
higher empirical violation rates implying a lack of capital.
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novel MMAR approach is a quantile based VaR approach using FX return and

volume data to enhance risk forecasts. We obtain superior forecast results as

compared with other alternate VaR models (historical simulation and GARCH).

While our results confirm the importance of considering multifractality when

attempting to predict risk, further refinements of standard approaches are im-

portant for efficient market risk prediction.

Another important fact is that our MMAR model is a consistent approach

which does not need any further model specifications. Other standard approaches

for VaR including extreme value theory, or GARCH, need additional specifica-

tions. For example, GARCH based VaR needs an assumption for the innovations

distribution. This is also a relevant aspect for estimating VaR via extreme value

theory because one has to prefilter raw returns in order to obtain independent

returns. When raw returns are prefiltered by a GARCH filter than the choice of

the innovations distribution influences the quality of VaR results, as well.
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A Backtesting VaR

Market risk models predict VaR with error. The validity of a VaR prediction

model is measured based on predicted versus actual loss levels. To evaluate

the out-of-sample performance of the proposed models we follow the concept

of Christoffersen (1998). The indicator (or hit) function It = 1{Rt,h<−V aRαt,h}

represents the history of observations, t = 1, ..., T , for which losses in excess of

the predicted VaR occur.

A.1 Unconditional Coverage

When a VaR model is designed perfectly, the number of observations that fall

outside the predicted VaR should be exactly in line with the given VaR level,

such that E(It|Ft) = α holds. Hence, the test of unconditional coverage is

H0 : E(It|Ft) = α vs. H1 : E(It|Ft) 6= α.

Under the null hypothesis, the likelihood-ratio (LR) test statistic follows as

LRuc = −2 ln[L(α)/L(α̂)] ∼ χ2(1), (19)

where L(α) is the binomial likelihood with parameter α and α̂ = 1
T

∑T
t=1 It is

the maximum likelihood estimator of α.



A.2 Independence

Besides the above requirement VaR violations should be independent, which

requires an additional test. Let nij denote the number of observations for which

It = j occurred following It−1 = i and assume that {It} is a first-order Markov

chain with transition probabilities πij = P(It = j|It−1 = i). This yields the

likelihood

L(Π) = (1− π01)
n00πn01

01 (1− π11)
n10πn11

11 .

Maximum likelihood estimators for the transition probabilities are:

π̂01 =
n01

n00 + n01

, and π̂11 =
n11

n10 + n11

.

Under the null hypothesis of independence, P(It = 0) = π0 = π01 = π11, which

implies

L(π0) = (1− π0)
n00+n10πn01+n11

0 .

The maximum likelihood estimate for π̂0 is

π̂0 =
n01 + n11

n00 + n10 + n01 + n11

.

Based on π̂0 and Π̂, the independence LR test statistic is

LRind = −2 ln[L(π̂0)/L(Π̂)] ∼ χ2(1). (20)



A.3 Conditional Coverage

The LRind statistic (20) tests for independence, but it does not take coverage

into account. Christoffersen (1998) therefore proposes a combined test statistic:

LRcc = LRuc + LRind

= −2 ln[L(α)/L(Π̂)] ∼ χ2(2). (21)



B Tables

Table 1: EUR/USD Return Statistics

Summary statistics of EUR/USD returns for various aggregation levels h. The Phillips-Perron
unit root test statistics indicate that the null has to be rejected in favor of the stationarity
alternative. Sample period: January 5, 2006 to December 31, 2007.

Frequency 5 minutes 1 hour 1 day 1 week
Mean 1.4× 10−6 0.00002 0.00040 0.00205

Std. Dev. 0.0003 0.0009 0.0045 0.0109
Skewness 0.85 0.42 0.05 -0.48
Kurtosis 124.73 16.78 4.08 3.23

AC of Rt(1) 0.068 -0.001 -0.045 -0.179
AC of Rt(2) -0.023 0.005 -0.001 0.083
AC of Rt(3) -0.015 0.016 0.023 -0.118
AC of |Rt|(1) 0.176 0.133 -0.017 0.047
AC of |Rt|(2) 0.160 0.075 0.024 0.136
AC of |Rt|(3) 0.135 0.062 0.031 0.049



Table 2: VaR Forecasts

Results of 1%-VaR predictions for 12-hour (h = 144) and daily (h = 288) forecast horizons.
V aR denotes average sample VaR. LR-statistics are as defined in Appendix A, where * and **
denote rejection of the null at the 5 and 1 percent significance levels, respectively (corresponding
p-values in parenthesis). All VaR forecasts are based on a moving window which consists of 288
5-minute high frequency EUR/USD returns. MMAR denotes the multifractal model of asset
returns, HS is the historical simulation and GARCH refers to the generalized autoregressive
conditional heteroskedasticity model.
Horizon Size MMAR HS GARCH
12-hour 959 V aR 0.0098 0.0070 0.0080

α̂ 1.04 2.60 2.19
LRuc 0.02 17.34** 10.24**

[0.895] [0.000] [0.001]
LRind 0.21 1.34 0.94

[0.646] [0.247] [0.332]
LRcc 0.23 18.68** 11.18**

[0.892] [0.000] [0.004]
1 day 479 V aR 0.0137 0.0098 0.0109

α̂ 0.84 1.46 1.25
LRuc 0.14 10.24** 0.29

[0.709] [0.001] [0.593]
LRind 0.07 0.07 0.15

[0.795] [0.795] [0.696]
LRcc 0.21 10.31** 0.44

[0.902] [0.006] [0.803]



C Figures

Figure 1: Continuously compounded 5-minute EUR/USD returns. Sample period: January 5,
2006 to December 31, 2007.



(a) 5-minute EUR/USD Returns (b) Daily EUR/USD Returns

Figure 2: Quantile-Quantile (Q-Q) plots of EUR/USD returns for 5-minute in panel (a) and
daily sampling in panel (b) are given. In both panels the empirical quantiles (points) are
plotted against the theoretical quantiles of a normal distribution (straight line). If the two
distributions are similar, the point of the empirical distribution should lie on the line. With
an increasing sampling frequency the returns are less tailed, but have still fater tails as the
normal distribution. Sample period: January 5, 2006 to December 31, 2007.

(a) 5-minute Volume Ticks (b) Cumulative Trading Time

Figure 3: Panel (a) illustrates 5-minute EUR/USD trading ticks Vt. A tick is a trade through
the platform for the standard minimum amount of about 3-5 million euro. Panel (b) contains
the cumulative trading time Θt. Sample period: January 5, 2006 to December 31, 2007.



Figure 4: EUR/USD return partition functions for moments 1 ≤ q ≤ 5. For each moment q
the curves represent the ranges log h from 5-minutes up to one week. 5-minutes correspond to
log 1 = 0 and one week is log 1440 = 7.27. The renormalization for all partition functions is
logS(q, 5-minutes) = 0. This procedure allows us to plot all curves on the same graph. Sample
period: January 5, 2006 to December 31, 2007.



Figure 5: Estimated scaling functions of EUR/USD returns and Brownian motion. For each
partition function S(q, h), we estimate the slope by OLS regression (5) to obtain τ(q). The
scaling function of ordinary Brownian motion (dashed line) is linear which is typical for
unifractal processes. Multifractal processes have non-linear scaling functions (see Definition
2.1). The estimated τ(q) (solid line) of EUR/USD returns is non-linear and concave. Sample
period: January 5, 2006 to December 31, 2007.



Figure 6: 12-hour ahead VaR forecasts for our MMAR approach (dash dotted line), historical
simulation (dashed line) and GARCH (solid line). The forecasting period is January 6, 2006
to December 31, 2007.


