
Modeling the volatility of stock returns

in periods of financial market stress

Christopher F Bauma,b,1, Paola Zerillic

aDepartment of Economics, Boston College, Chestnut Hill, MA 02467 USA
bDIW Berlin, Mohrenstraße 58, 10117 Berlin

cDepartment of Economics and Related Studies, University of York, York YO10 5DD, UK

Abstract

In this paper we evaluate the statistical properties of daily US stock index returns over more
than three decades. The relationship between volatility of the stock return process and its
fourth moments is shown to be time-varying over that horizon, which we model by identi-
fying three subperiods with more stable properties. We find that subperiod-specific models
of stochastic volatility offer superior performance to a single model fit to the entire period.
During periods of high kurtosis, we propose a new model for stock returns pricing that can
hold even in the event of severe financial market stress. For instance, implied volatility of the
S&P500 index during 1987 was characterized by very sharp movements in both directions.
Unlike existing models which only allow for dramatic increases in volatility, the proposed
model allows the stock return volatility to wander about its path without any restrictions.
This allows the volatility to either rise or fall violently while the entire process remains pos-
itive. The Efficient Method of Moments is used to estimate the parameters of the stock
index returns process and its corresponding volatility. Improved modeling of volatility has
important implications for option pricing.

Preliminary and incomplete – please do not quote

Email addresses: baum@bc.edu (Christopher F Baum), paola.zerilli@york.ac.uk (Paola Zerilli)
1Corresponding author.
2The White Rose Grid (http://academic.research.microsoft.com/Paper/3981359.aspx) was used to sup-

port this work. We would like to acknowledge the support of the White Rose Grid and White Rose Grid
staff. We also thank the Department of Economics and Related Studies, University of York, for their financial
support. We appreciate the comments of participants at the 18th Forecasting Financial Markets Conference,
Marseille, May 2011, the 28th GdRE Symposium on Money, Banking, and Financial Markets, Reading,
June 2011, the 46th Annual Conference of the Money, Macro and Finance Research Group, Birmingham,
September 2011 and the 4th CSDA International Conference on Computational and Financial Econometrics,
University of London, December 2010.

May 21, 2012



1. Introduction

The main objective of this paper is to construct a model for stock index returns that

can hold even in the event of severe financial market stress. While stock return volatility is

unobservable, a good indicator for its behavior can be found in the volatility implied in the

corresponding index option market. As is evident from Figure 1, S&P500 implied volatility

during the year 1987 was characterized by very sharp movements in both directions. Using

econometric analysis, we split a long time period of November 1973 through December 2010

into three subperiods in which the relationship between volatility and the first, third and

fourth moments of stock index returns is more stable than over the entire period. This

analysis of the series’ statistical properties allows us to select the model that best fits each

one of these subperiods.

For the subperiod July 1986–July 1997, where stock index returns exhibit very high

kurtosis, we propose a new model and show that this new model outperforms any existing

structure. A high degree of kurtosis represents a much greater frequency of sizable move-

ments, positive and negative, in the underlying series. In our data, the high kurtosis in

this subperiod is accompanied by sizable differences in the mean and skewness of the series.

This implies that the relationship between volatility and the first, third and fourth moments

of the series does not exhibit temporal stability. Unlike existing models which only allow

for dramatic increases in volatility, the proposed model allows the stock return volatility to

wander about its path without any restrictions. This allows the volatility to either rise or

fall violently while the entire process remains positive.

We propose a model for asset pricing that allows for spikes in volatility by constructing a

new, more general log-variance model. The key aspects of the model proposed here are the

following:

i) stock prices follow a mixture of Brownian motion and a multivariate compensated Pois-

son process;

ii) the logarithm of the variance follows an Ornstein–Uhlenbeck process with jumps whose

size is random and whose sign is unrestricted;

iii) the stock price can jump both alone and together with volatility.
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Figure 1: Spikes in the historical market implied volatility series for 1987
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This last feature is based upon the empirical observation of the S&P500 option prices’

at the money (ATM) one-month implied volatility (IV) and the corresponding underlying

stock returns (see Figure 2). In 1987, it is very easy to notice that in some periods, stock

returns and the corresponding implied volatility are moving simultaneously, while at other

times there are uncorrelated movements in the two series.
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Figure 2: S&P500 at-the-money one-month implied volatility and corresponding stock returns (1987-1997).

We estimate the parameters of the structural model for the stock price dynamics using

the Efficient Method of Moments (EMM) employing the time series of daily S&P500 stock

returns. This choice reflects the fact that one can observe a part of the state vector (in

this case, the stock return series), but not its corresponding volatility. This necessarily rules

out estimation approaches such as maximum likelihood (MLE) or the generalized method of

moments (GMM).

The EMM approach is based on indirect inference. The main idea is to replace the initial

model with a more tractable approximation. The latter is denoted the auxiliary model and

4



is a descriptive model with a large number of parameters. Following Gallant & Tauchen

(2002), we evaluate the scores of the auxiliary model using the simulated series of data

derived from the structural model. In this way, we determine the moment conditions for

this problem. The proposed log-variance model is capable of accommodating both the linear

aspect and the tail behavior of the data. When estimated from the full sample, the estimate

of the mean of the jumps that affect volatility is negative and significantly different from

zero. This result shows that the assumption of positive jumps in volatility made by Duffie

et al. (2000) is overly restrictive.

The paper is organized as follows. In Section 2, we clarify the core issues in the literature.

Section 3 sets up the model and addresses the relevance of the risk premia and of the binding

no-arbitrage condition. In Section 4, we explain the estimation methods adopted in the

paper. Section 5 presents the empirical results and the corresponding diagnostic statistics

and Section 6 concludes.

2. Review of the Literature

Stochastic volatility (SV) models have been used extensively in the empirical finance liter-

ature; see Ghysels et al. (1996) for a comprehensive review. Many generalizations have been

introduced in order to replicate specific aspects of the data and to improve the performance

of continuous time models. These include:

i) Stochastic volatility in order to account for negative skewness and high kurtosis in the

stock return series (see, e.g., Cox (1975), Cox (1996), Hull & White (1987), Scott (1987),

Wiggins (1987), Stein & Stein (1991), Heston (1993), Naik (1993), Duan (1995) , Fouque

et al. (2000), Davydov & Linetsky (2001), Detemple & Tian (2002));

ii) Stochastic volatility and jumps in the stock price process so as to improve the pricing of

short term options (see, e.g., Bates (1996), Scott (1997), Carr et al. (2003));

iii) Stochastic volatility and jumps in both the stock price and volatility processes in order

to achieve the empirically observed persistence in the impact of jumps (Duffie et al.

(2000)).

If we consider the implied volatility (IV) derived from option prices as a proxy for the

behavior of volatility for stock returns, then a major issue remains unexplored, as none of the
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existing models is capable of accounting for spikes in the observed implied volatility. More

specifically, in Duffie et al. (2000), volatility is modeled as an affine process that can jump

up violently, but that subsequently cannot jump down as observed in the data. Therefore, as

Eraker et al. (2003) observes, by relying on the assumption of positive jumps in the volatility

process, the Duffie model can explain the abrupt increase in volatility registered on the day

of the crash, but not the subsequent violent fall.

In the commodity pricing literature, spikes in the spot price process have been modeled

and tested for some time (see Geman & Roncoroni (2006) for a review) while the volatility

of the process is treated as constant. Our model differs from this literature not only in the

way spikes are allowed, with no restrictions on the size of the jumps, as well as the way they

are allowed to affect both the stock return process and the volatility process.

Empirical tests for jumps have been considered by Kobayashi (2005) who proposes a test

for jumps in volatility for the case where jumps in returns and volatility are contemporaneous

and correlated and jumps in volatility can be only positive, with the jump size exponentially

distributed. In contrast, Lee & Mykland (2008) propose a non-parametric test to detect

jump arrival times and realized jump sizes in asset prices. In the related literature on high

frequency data some advances in SV models with jumps in volatility have been recently

proposed: see in particular Todorov (2011) where volatility is a moving average of past

jumps.

In this paper we test for spikes in volatility indirectly by arguing that in periods of

high financial instability, evidenced by high kurtosis, taking account of spikes in volatility

dramatically improves the empirical performance of the model.

As a framework for the volatility process, we assume that the logarithm of the variance

follows an Ornstein–Uhlenbeck process.3 This choice reflects the ability of the exponential

function to generate high volatility values in a very limited time. Although many general-

3In discrete time, the counterpart of this model can be found in the EGARCH model of Nelson (1991).
Alternatively, Scott (1987) assumes that the logarithm of volatility (the square root of the variance process)
follows an Ornstein–Uhlenbeck process. Other branches of the literature model volatility as an Ornstein–
Uhlenbeck process where the underlying state variable is Gaussian (Wiggins (1987)); Chesney & Scott (1989);
Melino & Turnbull (1990)), as a CIR (Cox et al. (1985)) process with a reflecting barrier at zero where the
underlying state variable is Gamma distributed (Cox et al. (1985)); Bailey & Stulz (1989); Heston (1993))
or as a CEV (constant elasticity of variance) process (Cox (1975); Cox & Ross (1976); Jones (2003)).
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izations of the loglinear model have been introduced, there has been no consideration of the

possibility of Poisson jumps within this framework.4 The closest contribution in this direc-

tion is the model proposed by Duffie et al. (2000) who introduce jumps in a Cox, Ingersoll

and Ross (CIR) model for volatility (affine process). Compared to this specification, the

model proposed here is more flexible as in this framework:

• there are no constraints on the sign of the jumps in the volatility process;

• the stock price is able to jump both alone and together with volatility;

• the exponential function is suitable for modelling periods of market stress due to its

ability to generate extremely high volatility values.

All these features enable our model to price a stock (or the market index) and its under-

lying derivatives even in the context of severe financial market stress.

3. The Model

The σ−field Ft represents the information that investors have at each point in time

t ∈ [0, 1] with Fs ⊂ Ft if s ≤ t. Suppose that (Ω, P,F) is the probability space for this

model. More specifically, P is the probability measure which represents investors’ beliefs,

Ω is the set of states of the world and F ≡ F1 is the set of events that can be seen at the

trading horizon. The filtration F ≡ {Ft; t ∈ [0, 1]} is assumed to be right continuous and

P -complete. In this economy there are N stocks. The price of the stock portfolio St, at

time t is assumed to follow a mixture of Brownian motion and a multivariate compensated

Poisson process. More specifically, the stock price process is right continuous (securities are

traded ex-dividend) and left limited.5

Besides the bond Bt = e−rt, there is a portfolio of risky assets and a stochastic volatility

component.

The intuition behind these two equations is very simple. The stock price St is allowed to

vary not only over time, but also in response to two kinds of shocks:

4Alizadeh et al. (2002), Chacko & Viceira (2003), and Gallant & Tauchen (1999) consider volatility as a
multifactor diffusion model.

5One can assume, without loss of generality, that the left limit exists and is finite: Snt− = limu→t Snu.
Consequently, the jump of the stock price at time t will be: ∆Snt = Snt − Snt− .
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i) diffusive shocks, such as W1t, W2t, which affect the stock price gradually and by small

amounts. Any diffusive shock affecting the volatility process impacts the stock price

process through the “weak leverage effect” β12.

ii) Poisson driven shocks, represented by the random measures P1 and P2, which account

for abrupt and huge changes in the stock price. P1 represents the number of jumps,

with stochastic size ζ1, experienced by the stock return over the time interval (0, t]. P2

plays the same role as P1, but it regulates the time varying impact exerted on the stock

price by any shock to the corresponding volatility. In this case, the jump size is ζ2. We

are thus in a position to replicate abnormal market movements that take place when

volatility is affected by huge shocks which are transmitted to the stock price through

the “strong leverage effect” ψ33.

d lnSt = µdt+
√
Vt

[
β12dW2t +

√
1− β2

12dW1t

]
(1)

+
√
1− ψ2

33

∫

R\{0}

ζ1 (Γ)P1 (dΓ, dt) + ψ33

∫

R\{0}

ζ2 (Γ)P2 (dΓ, dt)

where the stochastic part of the corresponding volatility follows the law

Vt = exp(Ut)

dUt =
(
µU + α22Ut

)
dt+ β20dW2t +

∫

R\{0}

ζ3 (Γ)P2 (dΓ, dt) (2)

ζ1 (Γ) ∼ N(ψ11, ψ
2

12)

ζ2 (Γ) ∼ N(ψ13, ψ
2

23)

ζ3 (Γ) ∼ N(ψ21, ψ
2

22)

where
∫
R\{0}

ζi (Γ)Pj (dΓ, dt) − µζiλjdt for i = 1, 2, 3 and j = 1, 2 are the compensated

Poisson random measures.
∫
R\{0}

ζi (Γ)Pj (dΓ, dt) counts the number of jumps with random

size ζi (Γ) in the set R\ {0} during the small time interval dt. Pj (dΓ, dt) = 1 only whenever

the jump event of size ζi (Γ) occurs; Pj (dΓ, dt) = 0 in all other cases.
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4. Estimation Method

The model of this paper could be estimated using maximum likelihood estimation (MLE),

Semi-Non-Parametric (SNP) methods or the Simulated Method of Moments (SMM). How-

ever, as volatility is a latent variable, MLE would be too demanding and intensive from the

computational point of view. Indeed, volatility should be integrated out of the likelihood

function and the dimension of this integral would be as large as the number of observations in

the time series. For similar reasons, SNP procedures are also not easily implemented. SMM,

which uses Monte Carlo simulation to construct the moment conditions for the Generalized

Method of Moments (GMM), is not efficient.

A possible alternative to this estimation method is to use the Efficient Method of Moments

(EMM) to simultaneously estimate the parameters of the stock return process and the risk

premia. However, while this technique appears more intuitive for its ability to directly

provide estimates of the risk premia, it is vulnerable to the critique that the estimation

based on a multidimensional auxiliary model suffers from poor finite sample properties (see

Duffee & Stanton (2004)). Moreover, the use of return and option data at the same time

is computationally so intensive that its implementation typically involves the use of very

short data sets. An example can be found in Chernov & Ghysels (2000) who estimate the

Heston model by EMM using both stock and option data. The multidimensional approach

is also employed by Pan (2002) who estimates a square root model with jumps by GMM,

by Eraker (2002) who evaluates the Duffie et al. (2000) model by the Markov Chain Monte

Carlo (MCMC) technique and Jones (2003) who estimates a CEV (Constant Elasticity of

Variance) model. Alternatively, the unidimensional approach, where only the stock return

series is used, is chosen by Andersen et al. (2002) and Chernov et al. (2003) who use EMM

to estimate the parameters of many possible models for the stock return process.

4.1. Estimating the stock return and volatility parameters by EMM

The parameters of the stock price and volatility processes are estimated via EMM. Specif-

ically, the vector of parameters to be estimated at this point is (see equations [1] and [2]):

ξ1 = (α10, β12, ψ33, ψ11, ψ12, ψ13, ψ23, ψ13, α20, α22, β20, ψ21, ψ22, λ1, λ2)
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The initial step consists in choosing an appropriate transition density called the auxiliary

model which is a close approximation of the data generating process. The parameters of this

density are estimated by QMLE (Quasi Maximum Likelihood Estimation). The score of this

model represents the score generator for EMM.

Following Gallant & Tauchen (2002), the auxiliary model is derived by using the so-

called SNP (Semi-Non-Parametric) approach. This approach consists of approximating the

unknown density of the stock returns using a Hermite expansion with a Gaussian leading

term. The higher order terms of this expansion will accommodate any deviation from Gaus-

sianity such as, for example, high kurtosis and negative skewness.

Let fK (yt| xt−1, an) denote the resulting density of the stock returns with a the vector

of unknown parameters. The parameter vector a will be estimated by the QMLE method.

Hence, âQMLE will be such that

1

n

n∑

t=0

∂

∂a
ln fK (yt| xt−1, ân) = 0

Let sf (Yt, ân) ≡ ∂
∂an

ln fK (yt|xt−1, ân) be the score function and let

ŶT (ξ1) = {ŷ1 (ξ1) , ŷ2 (ξ1) , ............., ŷT (ξ1)}

denote a simulated time series using the structural model with fixed parameter vector ξ1.

Evaluating the score functions at this simulated series of data and keeping the parameters

of the auxiliary model fixed at âQMLE , we obtain a set of moment conditions

mT (ξ1, ân) ≡
1

T

T∑

t=1

sf

(
Ŷt (ξ1) , ân

)

where

sf

(
Ŷt (ξ1) , ân

)
≡ ∂

∂an
ln f

K
( ŷt| x̂t−1 (ξ1) , ân)

The EMM estimator ξ̂1nwill be such that

ξ̂1n = argmin
{
mT (ξ1, ân) V̂

−1

n mT (ξ1, ân)
′
}

where, following Gallant & Long (1997), a consistent estimator of the asymptotic covariance

matrix of the sample score vector may be obtained by:

V̂n =
1

n

n∑

t=1

sf (Yt, ân) sf (Yt, ân)
′ .
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5. Empirical Results

In this section, we describe the data, explain the EMM estimation and estimate seven

other well-known models for stock pricing as benchmarks for our model.

5.1. Analysis of S&P 500 stock returns’ statistical properties

We consider daily percentage index returns:

yt = 100[ln(St)− ln(St−1)]

on St, the S&P 500 stock index, for the period November 1973–December 2010: 9,380 busi-

ness days. To evaluate the temporal stability of the stochastic process generating percentage

returns, we compute the first four moments of the series with a moving-window procedure.

The window width is set to approximately one year of trading data (252 business-daily obser-

vations). This fixed-width window is moved through the data by approximately three trading

months (63 business days). The resulting dataset contains 216 observations, corresponding

roughly to calendar quarters. The mean, standard deviation, skewness and kurtosis of these

observations are presented in Figure 3.

5.2. Temporal stability

As our analysis is concerned with the volatility of the stock index returns series, we

evaluate whether the relationship between the four moments exhibits temporal stability over

the sample period. A breakpoint regression procedure of the type discussed by Hansen (2001)

is performed for a regression model in which

σt = β0 + β1µt + β2skt + β3kut + ǫ (3)

where skt and kut refer to the moving-window estimates of skewness and kurtosis. This equa-

tion is augmented with an indicator variable for each time period included in the breakpoint

period. The breakpoint period excludes the first 5% and last 5% of the observations. The

indicator variable is interacted with each of the regressors, and the sum of squared errors

(SSE) for each break period recorded. The minimum value of SSE is chosen as the break

period.

Inspection of the sequence of minimum SSE values (see Figure 4) indicates that there

are two points in time that may be considered breaks in the model’s temporal stability: in
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June 1986 and July 1997, as indicated on the Figure. Consequently, further analysis of the

S&P 500 index returns is performed separately for three periods.
28
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Figure 4: S&P 500 returns: analysis of temporal stability

The moments of the returns for each subperiod and for the entire sample are reported in

Table 1. As is quite evident, the second subperiod, July 1986–July 1997, is quite unusual in

terms of its mean, skewness and kurtosis. Its mean is twice that of the earlier period, and

more than four times larger than its value in the third period. Likewise, the second subperiod

is characterized by much larger negative skewness than the following period, while skewness

in the first period is mildly positive. The kurtosis of the second subperiod is exceedingly large

when contrasted with that of its predecessor or successor. Therefore, the data generating
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Table 1: S&P returns: descriptive statistics by subperiod

N µ σ sk ku
Nov 1973-Jun 1986 3178 0.026 0.907 0.216 4.598
Jul 1986-Jul 1997 2804 0.046 0.997 -4.695 109.098
Aug 1997-Dec 2010 3398 0.010 1.352 -0.164 10.128
Full Sample 9380 0.026 1.113 -1.088 29.651

process for stock index returns does not exhibit temporal stability, and a well-specified model

of its properties must take that into account. Before we proceed to modeling the series, we

evaluate the time series properties of the daily index returns series.

5.3. Time series properties of the returns series

For each of these three subperiods, we test the returns series and their squares for the

presence of a unit root. Using the Elliott et al. (1996) DF-GLS test, each of these series

produced rejections of the null hypothesis of a unit root at the 5% level of significance, and

most rejected at the 1% level of significance.

For each regime, the returns series were modeled with an AR(5) process, allowing for

weekday effects in the autocorrelations of the returns process. Their residuals were ana-

lyzed for the presence of ARCH(p) effects for p = 1, 2, . . . , 21. The null hypothesis of no

ARCH effects was decisively rejected for all values of p for each of the three residual series.

GARCH(1,1) models were fit to the returns series for each subperiod using both a Gaussian

and a t-distribution for the mean equations’ errors. The results of these models are presented

in Tables 2, 3, and 4 for the three subperiods.

In the first subperiod, Nov. 1973–June 1986, only the first lagged return is significant in

the mean equation. The GARCH terms’ values cannot reject the hypothesis of integrated

GARCH (IGARCH). The degrees of freedom for the t-distributed errors, labeled lndfm2, is

estimated at 14, reflecting the relatively low kurtosis of returns in this subperiod.

In the second subperiod, Jul. 1986–Jul. 1997, several lags in the mean equation are signif-

icant, and approximate IGARCH effects can be noted in the conditional variance equation.

The degrees of freedom for t-distributed errors are estimated to be 4.6, reflecting the high

kurtosis in this subsample.

In the third subperiod, Aug. 1997-Dec. 2010, several lags in the mean equation are again

14



Table 2: ARCH estimates S&P500 returns, Period 1: 11/1973–06/1986

(1) (2)
spret
L.spret 0.154∗∗∗ 0.151∗∗∗

(8.31) (8.19)

L2.spret -0.0276 -0.0280
(-1.43) (-1.50)

L3.spret -0.000118 -0.00115
(-0.01) (-0.06)

L4.spret -0.0161 -0.0158
(-0.87) (-0.87)

L5.spret -0.000268 0.000511
(-0.02) (0.03)

cons 0.0253 0.0196
(1.83) (1.41)

ARCH
L.arch 0.0435∗∗∗ 0.0405∗∗∗

(8.31) (6.27)

L.garch 0.948∗∗∗ 0.952∗∗∗

(142.82) (119.97)

cons 0.00689∗∗ 0.00596∗∗

(3.29) (2.59)
lndfm2
cons 14.45∗∗∗

(10.67)
N 3178 3178

t statistics in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 3: ARCH estimates S&P500 returns, Period 2: 07/1986–07/1997

(1) (2)
spret
L.spret 0.0461∗ 0.0194

(2.09) (1.06)

L2.spret -0.0173 -0.0335
(-0.77) (-1.83)

L3.spret -0.0216 -0.0381∗

(-1.00) (-2.13)

L4.spret -0.0578∗∗ -0.0296
(-2.82) (-1.66)

L5.spret -0.0140 -0.0244
(-0.69) (-1.39)

cons 0.0666∗∗∗ 0.0758∗∗∗

(4.47) (5.97)
ARCH
L.arch 0.0911∗∗∗ 0.0448∗∗∗

(28.74) (5.95)

L.garch 0.894∗∗∗ 0.945∗∗∗

(150.25) (116.63)

cons 0.0173∗∗∗ 0.00833∗∗∗

(7.33) (3.53)
lndfm2
cons 4.598∗∗∗

(6.49)
N 2804 2804

t statistics in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 4: ARCH estimates S&P500 returns, Period 3: 08/1997–12/2010

(1) (2)
spret
L.spret -0.0535∗∗ -0.0560∗∗

(-2.64) (-2.95)

L2.spret -0.0217 -0.0436∗

(-1.27) (-2.51)

L3.spret -0.0207 -0.0251
(-1.16) (-1.44)

L4.spret -0.0126 -0.0130
(-0.73) (-0.76)

L5.spret -0.0455∗∗ -0.0345∗

(-2.60) (-2.02)

cons 0.0545∗∗ 0.0702∗∗∗

(3.20) (4.47)
ARCH
L.arch 0.0842∗∗∗ 0.0775∗∗∗

(12.23) (8.44)

L.garch 0.908∗∗∗ 0.919∗∗∗

(123.20) (102.99)

cons 0.0145∗∗∗ 0.00928∗∗

(6.69) (3.04)
lndfm2
cons 7.747∗∗∗

(11.06)
N 3398 3398

t statistics in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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significant, with near-IGARCH estimates in both specifications. The degrees of freedom for

t-distributed errors are estimated to be 7.7, reflecting moderate kurtosis in this subsample.

5.4. Estimation of the stock return parameters by EMM

Let

yt = 100[ln(St)− ln(St−1)]

be the daily S&P stock index return for our estimation problem. {y1, y2, ......, yn} is then the

available data set. We characterize as

xt−1 ≡ {yt−L, yt−L+1, ......, yt−1}

the L lagged values of the realization of the time series {yt}∞t=−∞.

Denote by H the finite dimensional Euclidean space where the likelihood functional is

characterized. The likelihood can therefore be written as

[
n∏

t=1

p (yt|xt−1, ξ1)

]∫
p (y, x0, ξ10) dy

where

p (yt|xt−1, ξ1) =
p (yt, xt−1, ξ1)∫
p (y, xt−1, ξ1) dy

and ξ1 is the parameter vector of this model.

Following Gallant & Tauchen (2002), by expanding [p (y, xt−1)]
1

2 in an Hermite series and

deriving the transition density of the truncated expansion, it is possible to calculate the

transition density fK (yt|xt−1) where

yt = Rzt + µxt−1

and R is an upper triangular matrix

vech(Rxt−1
) = ρ0 +

Lr∑

i=1

Pi

∣∣yt−1−Lr+i − µxt−2−Lr+i

∣∣+

Lg∑

i=1

diag(Gi)vech(Rxt−2−Lg+i
)
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and

µx = b0 +Bxt−1

is the location function where b0 is a vector and B is a matrix. The resulting standardized

residual will be

zt = R−1 (yt − b0 − Bxt−1)

with corresponding density function

hK (zt|xt−1) =
[P (zt, xt−1)]

2

∫
[P (u, xt−1)]

2
φ (u) du

where P (zt, xt−1) is the Hermite polynomial with rectangular expansion

P (zt, xt−1) =
Kz∑

j=0

Kx∑

i=0

aij (xt−1)
i
z
j
t

where a0 = 1 in order to achieve identification. P (zt, xt−1) is a polynomial in z of degree Kz

whose coefficients are polynomials of degree Kx. Kz is the order of the polynomial expansion

that allows for deviations of the tails of the distribution from the Normal density.

φ (t)is the standard normal density and the normalization term

∫
[P (u, xt−1)]

2
φ (u) du

is such that the SNP density integrates to one. Using this SNP model, it is possible to derive

the conditional density of yt as

fK (yt|xt−1) =
hK [R−1

x (yt − µx)|xt−1]

det (Rx)

The Hermite expansion consists of a polynomial in z (which represents the innovation)

multiplied by the standard Gaussian density. The flexibility of this model is the main reason

why this might be considered as the best choice in order to approximate the data generating

process. In fact, if Kz = 0, then this density function is just a standard Gaussian density.

Any deviation from this can be taken care of just by allowing for Kz > 0.

When the coefficients ai are not considered as functions of xt−1but as constants, the

density function of the innovation will be
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hK (zt) =

[∑Kz

i=0
aiz

i
t

]2
φ (zt)

∫ [∑Kz

i=0
aiui

]2
φ (u) du

this density will generate a Gaussian VAR if Kz = 0, while any departure from Gaussianity

are accommodated by setting Kz > 0.

In order to model important aspects of the data such as the presence of conditional

heteroskedasticity, it will be useful to assume that these coefficients ai are actually functions

of xt−1:

ai (xt−1) =

Kx∑

j=0

aijx
j
t−1

This further generalization introduces a nonlinear conditional shape variation with xt−1.

The conditional density of the innovations in this case will be

hK (zt) =

[∑Kz

i=0

(∑Kx

j=0
aijx

j
t−1

)
zit

]2
φ (zt)

∫ [∑Kz

i=0

(∑Kx

j=0
aijx

j
t−1

)
ui
]2
φ (u) du

The only restriction, in this case, is that the dimension of a (the parameter vector of

the auxiliary model) is greater or equal to the dimension of the parameter vector of the

structural model ξ1.

As already stated, we choose an auxiliary model whose main parameters include:

Lu number of lags in the location function µx

Lg number of lags in vech(Rxt−1
, g, r) lags in GARCH (autoregressive)

Lr number of lags in vech(Rxt−1
, g, r) lags in ARCH (moving average)

Lp number of lags in the xt−1 part of the polynomial P (zt, xt−1)
Kz degree of the polynomial P (zt, xt−1) in zt
Kx degree of the polynomial P (zt, xt−1) in xt−1

Following Chernov et al. (2003), we choose the values of these parameters that minimize

the BIC (Schwarz or Bayes information criterion). The final nonlinear, non-parametric aux-

iliary models we select for the three data sets are characterized by the parameters presented

in Table 5.

The three auxiliary models all constitute GARCH(1,1) processes with different polyno-

mial degrees in the Hermite expansion of the non-parametric error density function. For
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Table 5: Parameters for the auxiliary model by subperiod

11/1973–6/1986 7/1986–7/1997 8/1997–12/2010
Polynomial
Lp 1 1 1
Kz 6 6 7
Iz 1 1 1
Kx 1 2 1
Ix 1 1 1
Mean function
lagµ 1 1 1
Variance function
lagg 1 1 1
lagr 1 1 1
lagp 19 25 20
sn 1.340646 1.17327 1.23124342
BIC 1.36496 1.20901294 1.25536513

Note: lagµ specifies the lag order of the location function µx. lagg and lagr specify the order of the

GARCH(g,r) model. lagp specifies the lag order of the xt−1 polynomial.

the first and second subsets, we select a sixth-degree polynomial expansion (Kz) while for

the third subset we select a seventh-degree Hermite polynomial expansion. Intuitively, when

Kz > 0, the shape of the original Gaussian density is multiplied by a polynomial in z.

For the second subset, the data indicate Kx = 2, which accounts for an higher conditional

heterogeneity.

The restrictions implied by these specific choices of the auxiliary model’s tuning param-

eters specify a general nonlinear process with heterogeneous innovations. The parameters

Kz and Kx determine the degree of the polynomial P (zt, xt−1) and hence the nature of the

innovation process {zt}.

5.5. Benchmarking the model against established models

To evaluate the validity of the model proposed above, we must consider how well it satis-

fies the moment restrictions identified in the EMM procedure, and compare its performance

with that of competing models in the established literature. The models we consider include:
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Black–Scholes based models, which we designate as BS models:

• BS: the original Black & Scholes (1973) model, which analytically predicts a flat implied

volatility surface

• BSJ: the Black & Scholes (1973) model, augmented to allow jumps in the stock return

process, but with constant volatility, as developed in Andersen et al. (2002)

BS model:

d lnSt = α10dt+ β10dW1t

BSJ model:

d lnSt = α10dt+ β10dW1t +
∫
R\{0}

ζ1 (Γ)P1 (dΓ, dt)

Models in the class of those considered by Duffie et al. (2000), which we designate as SV2

models:

• SV2: a model with stochastic volatility only

• SV2J: a stochastic volatility model with jumps in the stock return process

• SV2IJ: a stochastic volatility model with jumps in both the stock return and volatility

processes. The jumps in volatility can only be positive, as they are exponentially

distributed.

SV2 model:
d lnSt = α10dt+

√
Vt−dW1t

dVt = α20 (α22 − Vt−) dt+
√
Vt−β20

[
β12dW1t +

√
1− β2

12dW2t

]

SV2J model:

d lnSt = α10dt+
√
Vt−dW1t + dJy

dVt = α20 (α22 − Vt−) dt+
√
Vt−β20

[
β12dW1t +

√
1− β2

12dW2t

]

SV2IJ model:
d lnSt = α10dt+

√
Vt−dW1t + dJy

dVt = α20 (α22 − Vt−) dt+
√
Vt−β20

[
β12dW1t +

√
1− β2

12dW2t

]
+ dJv
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Models which are generalizations of Nelson’s loglinear model, in which the logarithm of the

volatility process is modelled:

• SV1: a stochastic volatility model for log volatility (square root of the variance), based

on Scott (1987)

• SV1J: a stochastic volatility (log-variance) model with jumps in the stock return pro-

cess, based on Andersen et al. (2002)

• SV1CIJ: a stochastic volatility (log-variance) model with jumps in both the stock

return and volatility processes, as developed above

SV1 model:

d lnSt = α10dt+
√
Vt

[
β12dW2t +

√
1− β2

12dW1t

]

Vt = exp(Ut) dUt = (α20 + α22Ut) dt+ β20dW2t

SV1J model:

d lnSt = α10dt+
√
Vt

[
β12dW2t +

√
1− β2

12dW1t

]
+
∫
R\{0}

ζ1 (Γ)P1 (dΓ, dt)

Vt = exp(Ut) dUt = (α20 + α22Ut) dt+ β20dW2t

SV1CIJ model:

d lnSt = α10dt+
√
Vt

[
β12dW2t +

√
1− β2

12dW1t

]
+
√

1− ψ2
33

∫
R\{0}

ζ1 (Γ)P1 (dΓ, dt)+

ψ33

∫
R\{0}

ζ2 (Γ)P2 (dΓ, dt)

Vt = exp(Ut) dUt = (α20 + α22Ut) dt+ β20dW2t +
∫
R\{0}

ζ3 (Γ)P2 (dΓ, dt)

ζ2 ∼ N(ψ13, ψ
2
23) ζ1 ∼ N(ψ11, ψ

2
12) P1 ∼ Poisson(λ1) P2 ∼ Poisson(λ2)

ζ3 ∼ N(ψ21, ψ
2
22)
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5.6. Estimates from the full sample period

We first present a set of estimates of our model and several alternative specifications for

the entire sample period, November 1973–December 2010, in Table 6 for the SV2 models and

Table 7 for the SV1 models. Both tables include the BS models as a benchmark. Focusing

on the χ2 statistics, which test satisfaction of the moment conditions, we find that all five

SV2 models are rejected for the full sample, as are the three SV1 models reported in Table

7. However, the SV1CIJ model comes closest to satisfying the moment conditions.

Table 6: EMM estimates for the full sample November 1973–December 2010: BS and affine models

SV2 SV2J SV2IJ

α10

0.0311527
[0.71294915]

0.035944233
[3.66221]

0.03023252

α20

0.04360846
[6.005701]

0.016903059
[12.87673]

0.05212223

α22

0.92773870
[12.467758]

1.0879803
[13.03783]

0.4275454

β12
−0.28370491
[−3.875409]

−0.407813
[−4.718205]

−0.4303307

β10

β20
0.168272106
[15.89719]

0.1195266
[16.78426]

0.077056757

ψ11

−4.448700
[−30.75608]

−3.874262

ψ12

0.4228922
[6.641593]

0.569167

ψ13 1.92987

λ10
0.0054566559847
[373.673233]

0.005528941

λ20 0.0561991

χ2 (df) 57.9562[10] 13.8813[7] 19.3517[5]
10% cv 15.987 12.017 9.236
5% cv 18.307 14.067 11.070

As another diagnostic of the models’ performance, we may examine the quasi-t ratios for

the semi-nonparametric moment conditions of the auxiliary model.

5.7. Estimates from Period I: November 1973–June 1986

Estimation results for the first subperiod, from November 1973 through June 1986, are

presented in Tables 8 and 9 for SV2 and SV1 models, respectively. All of the BS and SV2

models are strongly rejected by the χ2 statistics, as are the three SV1 models in Table 9.
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Table 7: EMM estimates for the full sample November 1973–December 2010: BS and loglinear
models

BS BSJ SV1 SV1J SV1CIJ

α10

0.0562316
[7.66743]

0.091810
[2.967812]

0.0308592
[3.235180]

0.141864
[4.95176145]

0.0381711
[2.27939]

α20

−0.455069
[−4.595626]

−0.5005016
[−7.78856]

−0.0074563
[−0.995711]

α22

−1.163803
[−34.3359]

−0.046107
[−19.280644]

−0.03425905
[−1.35311]

β10
0.75692
[76.5890]

0.450460
[14.73338]

β12
−0.1176739
[−4.9794]

−0.99146
[−148.10876]

0.069269146
[0.32332]

β20
0.4668804
[25.59067]

1.524906
[12.84034]

0.11880691
[2.35766]

ψ11

−0.0734479
[−1.74435]

−0.0253305
[−5.2156]

−3.013844
[−1.06104]

ψ12

0.792822
[28.59171]

0.408390
[28.56021]

1.56459412
[1.294473]

ψ21

0.29786937
[0.895110]

ψ22

1.10529
[3.862170]

ψ13

ψ23

0.23447892
[0.162018]

ψ33

0.37596133
[0.189626]

λ10
0.71358003
[117.07593]

0.1854397
[97.27136]

0.0070801672
[38.418351]

λ20
0.00792787314
[0.900871]

χ2 (df) 128.9063[13] 51.5983[10] 52.5286[10] 16.5680[7] 11.3930[2]
10% cv 19.812 15.987 15.987 12.017 4.605
5% cv 22.362 18.307 18.307 14.067 5.991
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Table 8: EMM estimates for Period I: November 1973–June 1986: BS and affine models

SV2 SV2J SV2IJ

α10

0.016193027
[1.114789]

0.0098101
[0.57175]

0.0430050
[2.765032]

α20

0.01770211834
[1.5218787]

0.01546107
1.53057

1.43277
[3.2445]

α22

0.52105140
[12.04433]

0.4883363
12.2820

0.43511
[13.99878]

β12
−0.06066831147

[−0.22717]
0.03037337
[0.09365]

0.11427
[0.73084]

β10
0.051689336
[2.53027]

β20
−0.0517339
[−2.66233]

0.263404
[2.77703]

ψ11

1.34219
[0.992004]

0.647340
[0.27539]

ψ12

−0.372609
[−0.24305]

1.23583
[0.42561]

ψ13

0.25211731
[0.188583]

λ10
0.001067498
[1.3047073]

0.00306355361
[0.54925]

λ20
0.0048672999
[0.17789]

χ2 (df) 83.4048[11] 80.2141[8] 74.826[6]
10% cv 17.275 13.362 10.645
5% cv 19.675 15.507 12.592
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Table 9: EMM estimates for Period I: November 1973–June 1986: BS and loglinear models

BS BSJ SV1 SV1J SV1CIJ

α10

0.0197076
[1.59127]

0.0119459
[0.70642]

0.0207120236
[0.207120236]

0.0398745
[2.3247365]

0.135686599
[0.43736082]

α20

−0.0103367704
[−1.4400]

−5.020958
[−0.747513]

−1.797768453
[−2.76984]

α22

−0.01451553
[−1.50038]

−5.292705
[−0.77797]

−1.9531735
[−9.96696]

β10
0.6584834
[43.4959]

0.61711
[34.30657]

β12
0.14655855
[0.14655855]

−0.31034601
[−2.05237]

0.0359059804
[0.08559]

β20
0.0693309362
[0.693309362]

−1.545346
[−1.182849]

−0.138323627
[−0.313635]

ψ11

0.237049
[1.50062]

−0.2903712
[−0.040580]

−0.170299582
[−0.27368]

ψ12

0.828243464
[6.5700]

3.750121
[0.225304]

−0.05435315254
[−0.068554]

ψ21

0.326450765
[0.0380740]

ψ22

0.05247372592
[0.0608103]

ψ13

ψ23

564.40325
[0.18389]

ψ33

0.000109389560
[0.00001]

λ10
0.08718664
[12.84178]

0.000043660265
[3.650576]

0.51342334
[6.337547]

λ20
0.0080338146
[0.20480]

χ2 (df) 97.4580[14] 88.8337[11] 82.0387[11] 64.8826[8] 68.0459[3]
10% cv 21.064 17.275 17.275 13.362 6.251
5% cv 23.685 19.675 19.675 15.507 7.815
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Thus, it appears that all models tested have weaknesses in modeling the behavior of stock

returns and their volatility over this subperiod.

5.8. Estimates from Period II: July 1986–July 1997

Table 10: EMM estimates for Period II: July 1986–July 1997: BS and affine models

SV2 SV2J SV2IJ

α10

0.0799066
[5.6194613]

0.09665205
[4.92614]

0.075335
[3.24266]

α20

0.4133988
[2.36865]

1.770400
[6.805131]

1.898026
[10.1222]

α22

0.4165384
[7.49780]

0.451205832
[4.44117]

0.476482
[3.4445]

β12
0.374536
[1.92056]

0.768549395
[1.21225]

0.23999986
[0.28434]

β10

β20
0.281851
[5.87722]

0.18214046
[1.51953]

0.1316202
[0.89240]

ψ11

−1.3886887
[−2.86522]

−0.397528936
[−1.2776]

ψ12

0.86905678999
[1.66107]

1.325589
[3.80379]

ψ13

−3.846667
[−0.17540]

λ10
0.026222736
[6.35045]

0.03101838
[461.538]

λ20
0.005183211
[0.1020]

χ2 (df) 39.3632[10] 35.5344[7] 20.8614[5]
10% cv 15.987 12.017 9.236
5% cv 18.307 14.067 11.070

Estimation results for the second subperiod, from July 1986 through July 1997, are

presented in Tables 10 and 11 for SV2 and SV1 models, respectively. This subperiod encom-

passes the October 1987 stockmarket crash. In Table 10 and Table 11, we may see that only

our model, the SV1 model with jumps in both returns and volatility, is not rejected by the

data in terms of its χ2 value. Interestingly enough, our log-volatility model performs much

better in a subperiod containing extreme movements in the stockmarket index than it does

in the earlier, generally more tranquil period.
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Table 11: EMM estimates for Period II: July 1986–July 1997: BS and loglinear models

BS BSJ SV1 SV1J SV1CIJ

α10

0.0772210
[5.597068]

0.09306499
[3.6961]

0.07190144
[4.28949]

0.1016
[2.3422]

0.1423908
[4.01896123]

α20

−1.250
[−3.973]

−0.0030054
[−0.4292]

−0.040530203
[−0.800335]

α22

−1.4924
[−8.515]

−0.0016397
[−0.4759]

−0.022429648
[−1.16666]

β10
0.648986717
[14.20358]

0.3793854
[8.40397]

β12
0.88014
[9.13648]

−0.270219
[−0.18974]

0.79392
[3.24275]

β20
0.5179150
[5.454914]

0.067950311
[0.75087]

0.186851
[0.68784]

ψ11

−0.05168689
[−1.11539]

−0.0324931
[−0.915861]

−0.100774774
[−1.07538]

ψ12

0.690576
[15.31877]

0.510799
[11.0900]

0.63050774
[1.3272]

ψ21

−17.3671
[−3.3778]

ψ22

13.37604
[4.98118]

ψ13

1.3965
[0.001380]

ψ23

27.542836
[0.001376]

ψ33

0.0312346
[0.0013752]

λ10
0.5395232
[55.21441]

0.0488781
[13.80290]

0.54046483
[21.81985]

λ20
0.001204818
[0.45782]

χ2 (df) 72.8018[13] 29.6264[10] 25.1529[10] 18.38[7] 1.2919[1]
10% cv 19.812 15.987 15.987 12.017 2.706
5% cv 22.362 18.307 18.307 14.067 3.841
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Table 12: EMM estimates for Period III: August 1997–December 2010: BS and affine models

SV2 SV2J SV2IJ

α10

−0.042366038
[−0.20397]

0.014802000
[0.710431]

0.01161460
0.47708

α20

0.011082021
[4.959558]

0.00863020295
[8.15417]

0.0104512
2.59717

α22

2.009403
[7.60872]

1.740817
[4.13879]

1.713096
2.4334

β12
−0.71137
[−3.67336]

−0.938691
[−6.54188]

−0.99672138
−27.5472

β10

β20
0.16977

[11.516311]
0.156252
[8.38224]

0.1802239
4.13577

ψ11

−4.00178
[−2.0619]

−2.42318171
−4.19059

ψ12

0.18310558
[0.026369]

0.02816455
0.007946

ψ13

1.8826256
0.536587

λ10
0.0049715342
[22.43955]

0.0086447946
2.5959297

λ20
0.0050748386
1.167182

χ2 (df) 33.7249[11] 25.1501[8] 20.9339[6]
10% cv 15.987 13.362 10.645
5% cv 18.307 15.507 12.592
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Table 13: EMM estimates for Period III: August 1997–December 2010: BS and loglinear models

BS BSJ SV1 SV1J SV1CIJ

α10

−0.053997
[−2.2852]

0.02268902
[0.84276]

−0.0306346
[−1.33050]

0.3872574
[1.1459011]

0.0430289
[0.52893]

α20

0.827633151
[3.3590]

−0.00443321
[−0.3575575]

0.003173521
[0.051972]

α22

−1.73459993
[−17.82101]

−0.00977295
[−1.944449]

−0.01175055
[−1.77850]

β10
1.5100

[22.036964]
1.237297
[13.19031]

β12
−0.8127432
[−15.3453]

−0.89498735
[−19.08624]

−0.904873
[−9.75749]

β20
0.306654540
[4.01378]

0.20927285
[1.85772]

0.1540752731
[1.09700]

ψ11

−1.88452
[−2.64830]

−0.08930065128
[−1.16276]

−0.5946577
[−0.40879]

ψ12

1.545987
[6.412399]

0.30249629
[2.35584]

1.1160117
[0.852266]

ψ21

−0.4966358
[−0.0622]

ψ22

0.48816915
[0.178629]

ψ13

ψ23

−1.8163421457
[−0.011027]

ψ33

0.09386244
[0.017582]

λ10
0.03091839
[602.4559]

0.18360887
[83.14866]

0.072735
[7.79337]

λ20
0.0067358317
[1.039822]

χ2 (df) 56.754[14] 53.1713[11] 39.9586[11] 22.7373[8] 19.0491[3]
10% cv 21.064 15.987 15.987 13.362 6.251
5% cv 23.685 18.307 18.307 15.507 7.815
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5.9. Estimates from Period III: August 1997–December 2010

Estimation results for the third subperiod, from August 1997 through December 2010,

are presented in Tables 12 and 13 for SV2 and SV1 models, respectively. This subperiod

encompasses the Great Recession and the ensuing stockmarket turbulence during the last

several years. In Table 12, we see that all of the BS and SV2 models are rejected by the

data on the basis of their χ2 statistics. The SV1 models in Table 13 are also rejected by the

data. In this period as well, it appears that all models tested have some significant flaws in

capturing all aspects of the stock returns and volatility processes.

6. Conclusions

This ongoing work seeks to provide a model of stock returns’ behavior and volatility

with greater flexibility to handle periods of financial market stress. Although results are

preliminary, it appears that modeling of these phenomena must take account of potential

structural instabilities over a longer period. Analysis of three subperiods, identified by the

data, indicates that the model developed in this paper performs quite well in the second

subperiod, encompassing the extreme events surrounding the October 1987 stockmarket

crash. During the earlier and later subperiods studied, including the more recent subperiod

including the Great Recession, we do not find that any of the models tested provide a wholly

adequate explanation of the dynamics of stock returns and their volatility.
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