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Abstract

This paper deals with the fair pricing of financial structured products
and their adequation both to investors attitudes towards risk and to rules
of risk management for the issuers. First, we summarize main empiri-
cal results about the mispricing of structured financial contracts for US
and various European countries. Using a geometric Brownian motion to
model the risky asset dynamics with appropriate financial parameters,
the average value of such mispricing lies between 3% and 6% according
to product complexity. Second, we provide an explanation of such feature
by introducing the notion of compensating variation. This latter concept
allows to measure the monetary loss that a client or a financial institu-
tion can bear due to the utility loss of not having his best portfolio or
due to significant risk exposure. We illustrate this notion for the most
standard structured financial contrat, namely the Option Based Portfolio
Insurance. Our results are in accordance with previous empirical studies.
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1 Introduction

One of the main purposes of investment banking is to develop constantly new
financial instruments. This innovation process, called “financial engineering”,
is most often based on the use of already existing products that are combined
to create new (complex) financial instruments, in order to better fit their cus-
tomers’needs. One of the most prominent groups of newly introduced finan-
cial instruments resulting from such financial engineering is termed “structured
products”. They have been proposed to enhance portfolio returns. The demand
for structured products has quickly increased.1 They are particularly marketed
through mutual funds and life insurance funds.2According to recent estimates,
gross sales of structured retail investment products amounted to EUR 174.2bn
in Europe, USD 179.8bn in the Asia-Pacific market, and to USD 65.1bn in North
America during the year 20103 . The European retail structured products mar-
ket has the top position in terms of worldwide sales. The European market is
estimated to have garnered €180bn ($226bn) in gross sales in 2009, down 13%
from the previous year. The total size of the North American market for struc-
tured products sold to retail investors is estimated at approximately $77bn in
terms of gross sales in 2009, $61bn of which sold in the US and $9bn in Canada.

Structured products allow investors to take advantage of the risky asset rises,
while being exposed only partially to market drops. The combination of basic
assets gives birth to new assets with very specific characteristics whose evalua-
tion appears very complex.4 During the periods of financial markets decline and
strong volatilities, the demand in favour of the structured products growths, in
particular those with a protection clause on capital. This is the purpose of port-
folio insurance that is designed to give the investor the ability to limit downside
risk while allowing some participation in upside markets. Such methods allow
investors to recover, at maturity, a given percentage of their initial capital, in
particular in falling markets. This payoff is a function of the value at matu-
rity of some specified portfolio of common assets, usually called the benchmark.
As well-known by practitioners, specific insurance constraints on the horizon
wealth must be generally satisfied. For example, a minimum level of wealth and
some participation in the potential gains of the benchmark can be guaranteed.
However, institutional investors for instance may require more complicated in-
surance contracts. The two main standard portfolio insurance strategies are the
Constant Proportion Portfolio Insurance (CPPI) and the Option Based Port-
folio Insurance (OBPI).5 The CPPI has been introduced by Perold (1986) for

1For example, the outstanding investment on this type of fund have been estimated at a
total value which borders the 500 billions of Euros (for European investors only) in 2007.

2With the aim of offering to their subscribers a predefined performance in any event in
addition to the guarantee of initial capital, insurers use these funds to boost the bond market
performance which is characterized by its relatively low yields.

3These data has been obtained from the database at www.structuredretailproducts.com.
4Discount reverse convertibles (DRC) together with reverse convertible bonds (RCB) are

important examples of structured products. They are combinations of a zero bond or a coupon
bond plus a short position in put options on stocks.

5The optimality of such dynamic portfolio strategies has been previously examined. Typ-
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fixed-income instruments and Black and Jones (1987) for equity instruments
(see also Perold and Sharpe, 1988). The CPPI strategy is based on a dynamic
asset allocation during the whole management period. The investor begins by
choosing a floor which is equal to his lowest acceptable portfolio value. Then,
at any time, the amount invested on the risky asset (called the exposure) is
proportional to the excess of the portfolio value over the floor (usually called
the cushion). The remaining funds are invested in cash, usually T-bills. The
proportional factor is defined as the multiple. Both floor and multiple are func-
tions of the investor’s risk tolerance. This portfolio insurance strategy implies
that, if the cushion value converges to zero, then exposure approaches zero too.
In continuous-time, this strategy prevents portfolio value from falling below the
floor, except if there is a very sharp drop in the financial market before the
investor can modify his portfolio weights.

The OBPI, introduced by Leland and Rubinstein (1976), is based on a static
combination of a risky asset S (usually a financial index such as the S&P)
covered by a listed put written on it. Whatever the value of S at the terminal
date T , the portfolio value is always higher than the strike K of the put. The
main purpose of the OBPI method is to guarantee a fixed amount only at
the terminal date. In fact, if the financial market is perfect, the OBPI strategy
provides a portfolio insurance at any time of the management period. The OBPI
strategy is a particular case of optimal positioning. This latter one has been
studied in the partial equilibrium framework by Leland (1980) and by Brennan
and Solanki (1981). The portfolio value is a function of the benchmark, in a
one period set up. The optimal payoff, which maximizes the expected utility,
depends typically on the risk aversion of the investor. Carr and Madan (2001)
consider markets in which exist out-of-the-money european puts and calls of all
strikes, which allows to study the optimal positioning in a complete market.
This is the counterpart of the assumption of continuous-time trading.6 Such
type of portfolio insurance strategy corresponds to optimal portfolio strategies,
under specific assumptions, as shown by Bertrand et al. (2001).7The optimal
payoff (maximizing the expected utility) depends crucially on the risk aversion
and prudence of the investor (see e.g. Eeckhoudt and Gollier, 2005; Bertrand
and Prigent, 2010).

However, two main problems arise: First, investment banks have to deter-
mine the costs of issuing such a given structured product. This is typically done

ically, the investor is assumed to maximize the expected utility of his terminal wealth, by
trading in continuous time (see Cox and Huang, 1989; Cvitanic and Karatzas, 1996). The
continuous-time setup is also usually considered to study portfolio insurance (see for example,
Grossman and Vila, 1989, Basak, 1995, and Grossman and Zhou, 1996). The main hypothesis
is that markets are complete: all portfolio profiles at maturity are perfectly hedgeable.

6This approximation is justified when there is a large number of option strikes (eg. for the
S&P500, for example). Due to practical constraints, liquidity, transaction costs..., portfolios
are in fact discretely rebalanced.

7Note that, in continuous-time, El Karoui, Jeanblanc and Lacoste (2005) prove that, under
a fixed guarantee at maturity, the Option Based Portfolio Strategy (OBPI) is optimal for quite
general utility functions (see also Jensen and Sorensen (2001) for a particular case).
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by using standard arbitrage-theoretical tools, assuming that financial markets
are perfect from active management of these financial institutions. Second, cus-
tomer’s potential utility gains induced by buying a given financial structured
product would be evaluated.

For the first pricing problem, note that structured financial products consist
of two or more different components, one of which must be a derivative (see
Stoimenov and Wilkens, 2005). They are issued by financial institutions such as
banks and are intended to private or institutional investors. They can be traded
on an organized exchange market or sold directly by their issuing institution
which will quote bid and ask prices. Since structured products are built up of
simpler components, the valuation methodology usually breaks them down into
their integral parts, i.e. simpler financial instruments. This approach should
ease the analysis and pricing of each component. The portfolio made up of these
simpler instruments must have the same payoff profile as the structured product.
Given the absence of arbitrage opportunities in financial markets, the value of
the structured product is equal to the sum of these individual components. This
approach allows the use of simple model to calculate fair market prices for the
simpler products. When it is not possible to decompose a product into simple
components, that is when the structured product is a combination of complex
instruments which are difficult to valuate, numerical procedures have to be used
to valuate the product (Monte Carlo experiments). In this paper, we do not
consider the issue of how the issuer replicates and hedges the payoffs of the fund.
It is known that most of the time asset swaps are involved in such replication
strategies. Moreover, there might be possible issue of conflict of interest between
asset management subsidiary and the derivative trading desk when these two
parties enter into an asset swap. For instance, the Financial Stability Board
notes for Exchange Trade Funds (ETF): “As there is no requirement for the
collateral composition to match the assets of the tracked index, the synthetic
ETF creation process may be driven by the possibility for the bank to raise
funding against an illiquid portfolio that cannot otherwise be financed in the
repo market. In case of unexpected liquidity demand from ETF investors, the
provider might face difficulties liquidating the collateral and may be faced with
the difficult choice of either suspending redemptions or maintaining them and
facing a liquidity shortfall at the bank level. In short, risks increase if the
bank considers the synthetic ETF structure as a stable and inexpensive source
of funding for illiquid securities. ETF investors may not always have sufficient
control over collateral arrangements to enable them to prevent such a situation.”
What is true for ETF structuring is also true for other structured products such
as those studied here.

For the second problem about the utility gains provided by the structured
products, the risk aversion is indeed crucial to describe the investors behavior.
As mentioned by Breuer and Perst (2007), “structured products are combina-
tions of derivatives and underlying financial assets which exhibit structures with
special risk/return profiles that may not be otherwise attainable on the capi-
tal market without significant transaction costs being incurred — at least for
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private investors (see, e.g., Das, 2000).” Therefore, investors may agree to pay
an (implicit) additional cost to have access to such products. Taking account
of the investors psychology, of their cognitive biases and emotional reactions,
behavioral finance can also provide a specific framework for the study of the
optimal positioning of these products. Several studies have been published on
this research topic. For instance, Hens and Riger (2008) show that the investor
will include more complex structured products than standard equities in his
portfolio. Driessen and Maenhout (2005) examine optimal positioning prob-
lems, assuming either expected utility or the CPT of Tversky and Kahneman
(1992). Pfiffelmann (2008) show how some specific structured products such as
capital linked notes depend crucially on the given reference level. Ben Ameur
and Prigent (2010), Jin and Zhou (2008), and Prigent (2008) examine portfolio
optimization with rank dependent expected utility. In this framework, it can be
proved for example that, under some specific assumptions about financial and
risk attitude parameters, portfolio profiles such as straddles can be optimal. In
this paper, our main concern is to examine of on the main explanations of the
mispricing of financial structured products, which is always observed empiri-
cally. Indeed, the misevaluation can be justified by the risk taken by the issuer
(the financial institution that sells the product) while the customer (who buys
the product) can bear an utility loss from not having his best portfoli profile.
To deal with such problem, we introduce the notion of compensating variation
which allows the measure of the willingness to pay for having a product that
fits better preferences than more standard ones.

This paper is organized as follows. Section 2 summarizes main previous
results about the fair pricing of financial structured products. Section 3 recalls
the definition and properties of the most standard structured product, namely
the standard option based portfolio insurance. Usual mispricing values of this
product are detailed. Section 4 introduces the notion of compensating variation
which is applied in various frameworks to calibrate the mispricing levels. In a
first step, we consider an investor who has not a direct access to the financial
derivatives market. We determine the compensating variation with respect to
the true optimal payoff with derivatives that can be provided by the bank. It
can be related to costs that the client may accept to benefit from such financial
service. In a second step, we assume that the banker provides exactly the
optimal payoff with insurance constraint of the customer. Therefore, the banker
may bear an utility loss for not having his own optimal portfolio profile. This
can potentially explain the mispricing of the structured products.
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2 Empirical findings about fair pricing of struc-
tured products

There are relatively few empirical studies about fair pricing of structured prod-
ucts. The usual way to assess the fairness of these products is first to determine
the payoff structure of the product and then, using standard financial formulas,
to price them in a Black-Scholes world, which means specifically that the risky
reference asset dynamics is described by a geometric Brownian motion. Thus,
the theoretical fair value of the product at inception can be compared with its
issue price.

The first studies devoted to structured products were conducted on the US
markets. The most earlier empirical studies on European structured products
markets focus on Switzerland, Germany and the Netherlands. The adopted
approach consists in comparing prices in the primary or secondary market to
theoretical fair values.

2.1 The case of the US market

Some authors have analyzed the pricing of convex products from the US markets,
among them are Chen and Kensinger (1990) and Chen and Sears (1990) who
examine the pricing of convex instruments on the S&P 500 and find substantially
positive and negative price deviations from the theoretical values.

Chen and Kensinger (1990) analyze the market for market-index certificates
of deposit (MICDs). These products are variable-rate certificates of deposit
for which the interest rate is contingent upon the performance of the S&P 500
index but with a guaranteed minimum interest rate. By comparing the implied
standard deviations form options written on the S&P 500 index with that of
the option component of the MICD, the authors are able to show that there
exist significant differences between theoretical values and issuers price. Chen
and Sears (1990) examine a similar product, the S&P 500 500 indexed note
(termed "SPIN"). The SPIN is a combination of a bond and a call option on the
S&P 500 index. Using averages of implied volatilites as well as their long term
historical values, they show evidence that these products can be over-valued
or under-valued. Baubonis et al. (1993) consider equity-linked certificates of
deposit issued by Citicorp. They find that an overpricing ranging from 2.5%
to 4%. Hernandez et al. (2011) examine reverse exchangeable securities. A
reverse exchangeable bond is a bond which pays a relatively high fixed rate
but the “principal payment” on the maturity is a contingent claim — contingent
upon the price of a pre-specified asset on the maturity date of the bond. If
the closing price of the underlying asset is higher than the predetermined price,
the investors will receive the “face value” of the bond, just like a traditional
bond. However, if the closing price of the underlying asset is below the pre-
determined exercise price, the investors will receive a fixed number of shares
of the underlying asset. They also find empirical evidence of an over pricing
of these products (see also Benet et al., 2006; Chen and Wu, 2007). Although
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the existing litterature documents some overpricing of structured products, it
is only recently that some authors take a more negative view of these products.
Henderson and Pearson (2010) call structured products the ’dark side of financial
innovation’ and argue that investors would be better on the money market than
to buy the structured product they analyze.

2.2 The case of the German and Swiss market

The retail structured product market is well established in Switzerland and Ger-
many with a large and active volume of products traded. This is reflected in
the high number of research papers devoted to these markets. Wilkens et al.
(2003) propose the first empirical study on financial structured products sold
in the German market. They analyze a large number of reverse convertibles
(or equity-linked notes without principal protection) and of discount certifcates
during the exchange trade of November 2001. By extracting implied volatility
from call option traded on the European exchange, they are able to determine
the theoretical values of these products and to compare them with that of the
secondary market. Their study reveals an "overpricing" of both reverse con-
vertibles and discount certificates. Stoimenov and Wilkens (2005) investigate
fair pricing of equity-linked structured products in the German private retail
banking sector. They compare product prices with theoretical (fair) values us-
ing prices of exchange-traded options. Their results show that, in the primary
market, all types of equity-linked structured products are, on average, priced
above their theoretical values. In general, more complex products incorporate
higher implicit premiums. In the secondary market, the overpricing decreases
as the products approach maturity (i.e. the life cycle hypothesis). At issuance,
what they call “classic” structured products8 on DAX index sell at an average
of 2.06% above their theoretical values. Entrop et al. (2009) analyze open-end
leverage certificates on the German market. This new generation of certificates
exhibits two main innovations: the issuers announce a price-setting formula
according to which they are willing to buy and sell the certificates over time
and the product have a potentially perpetual lifetime. Again, they find that
the price-setting formula implies a relatively high profit potential for issuers.
They show that their results are consistent with the “life cycle hypothesis” for
structured financial products.

Wasserfallen and Schenk (1996) investigate a sample of 13 capital protected
products in the Swiss market. They document a significant pricing bias in favor
of the issuing institution. Burth et al (2001) analyze securitized covered call
writing (concave) strategies in Switzerland through the initial pricing of 275
products. Their study covers all plain vanilla concave products on Swiss blue
chips that were outstanding on August 1, 1999. They find a significant aver-

8These products have concave payoffs and are basically the combination of a long postilion
in a zero coupon bond and a short position in a Put written on the DAX index. Equivalently,
they can be analyzed as a combination of a long position in the underlying and of a short
position in a Call. The investor buys the underlying asset at a discount but gives up a
substantial part of the upside potential.
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age overpricing of 1.91% in the primary market. They find structured products
with a coupon payment to be substantially more mispriced than those without
a coupon (3.22% vs. 1.40%). Grünbichler and Wohlwend (2005) examine the
pricing of 192 structured products without a capital guarantee. They compare
the implied volatilities of the options contained in the structured products with
those of comparable EUREX options. They illustrate that there inefficiencies
do exist on the Swiss market for structured products. Wallmeier and Diethelm
(2008) examine the market pricing of Swiss exotic structured products and con-
clude also to a significant overpricing.

2.3 The case of other European countries

More recently, Jørgensen et al. (2011) study principal protected notes (PPNs)
issued in the Danish retail market. By comparing actual offer prices with the-
oretical fair values, they find that PPNs are overpriced by about 6%. More
importantly, they show that only half of the overpricing can be explained by
the costs disclosed by sellers at the time of issuance. Thus, there exists an un-
explained cost component (i.e. hidden costs). Other empirical studies on the
fair pricing of structured products have been conducted in Sweden by Frohm
(2008) who evaluate twenty two index-linked notes from January 2005 to Janu-
ary 2007 that represent about 40% of the structured products issues in Sweden
during 2005. He does not observe any significant mispricing with respect to
the secondary market. On the contrary, Szymanowska et al.(2009) evaluate the
reverse convertibles in the Netherlands. They conclude that the mispricing is
about 6%.

In France, most structured products known as “fonds à formule9” are of the
convex payoff type and do not pay any coupon during their lifetime. One of the
key features of these “fonds à formule” is that no formal secondary market exists
and even the issuer bank has no formal obligation to redeem them. If redemption
is allowed, the investor may loose all the benefits of the formula.10 Investors
can also have access to structured products on Euronext through Warrants and
Certificates11 which are not mutual funds but are listed on the stock exchange
and tradable like shares. On December 31, 2010, the outstanding of funds with
a formula amounted to 61.8 billion euros, that is 4.62% of total outstanding
of French funds. Bertrand and Prigent (2011b) shows that the mispricing lies
between 2% and 5%, depending on product complexity.

9This expression could be translated by "funds with a formula" because a mathematical
formula is involved.

10 It is explicitly stated that "any redemption of shares before the maturity date will be
carried out at a price which will depend on market parameters that day" (after deduction of
redemption fees). It may be very different (higher or lower than) from the amount obtained
by applying the announced formula.

11Following their launch on the French market in 1989, the number of available products
rose to 3,700 by the end of 2000. Five years later, that figure had almost doubled to 6,358
warrants and certificates from around ten issuers. More than 20 institutions are now active in
this market, which currently accounts for an annual transaction volume in excess of 30 billion
euros and offers a choice of over 12,000 products.
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3 The standard financial structured product

In what follows, we analyse the fair pricing problem of the standard structured
fund, introduced by Leland and Rubinstein (1976). This product belongs to
the large familly of option based portfolio insurance funds. It consists of a
static combination of a risky asset S which is usually a financial index such
as the S&P 500 and of a put written on it. Whatever the financial market
fluctuations, the portfolio value is always above the strike K of the put, which
provides a guarantee at maturity corresponding to a fixed amount. We compute
the fund fair value to gauge the potential mispricing.12

3.1 Capped OBPI

This type of insurance strategy is the standard one. It is a (small) generalization
of the OBPI by introducing the following condition: from a given value of the
underlying asset, the payoff is constant (see Bertrand and Prigent (2011a) for
more details about such structured product). For the French market, we find
an average fair value of −2.4% for such standard products in the sample, for
usual volatility levels. To illustrate the methodology, we consider the following
example correponding to a fund issued in France.13

3.1.1 Fund Fair Pricing

• After the 8 years (denoted T ) of the management period, the initial port-
folio value V0 is guaranteed: VT ≥ V0,

• This value is increased by the performance of the Eurostoxx 50 index,
computed since inception. However, this performance is capped at 100%.

Additionally, in exchange of the dividends received by the fund, the investor
obtains at maturity the capital guarantee as well as the capped performance of
the Eurostoxx 50 index. At maturity, the payoff of this fund is the following:

• V0 if ST < S0,

• V0 STS0 if S0 ≤ ST < 2S0,

• 2V0 if ST ≥ 2S0.

Proposition 1 At inception, the arbitrage value of this fund, V0, is given
by:14V0(S0) = V0e−rT +

V0
S0
[Call (T, S0, S0, r, σ)−Call (T, S0, 2S0, r, σ)]

Figure (1) displays the payoff of this fund.

12We do not take account of a term structure of volatilities but sometime, if it is useful, we
take account of the interest rate term structure.

13Fund ’"Allianz Efficicio" issued by Allianz.
14See Appendix 1.
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Figure 1: Payoff of the capped OBPI

3.1.2 Numerical Example

At inception, the continuous-time zero-coupon interest rate with maturity 8
years is r = 3, 84%. The values of the parameters for the risky index are S0 =
100 and σ = 25%. Thus, we obtain the following initial fund fair value: V0(S0) =
97, 61. Note that, if the volatility is lower (resp. higher) and equal to 20% (resp.
30%) for instance, the initial fund value is V0(S0) = 98, 92 (resp. 96, 16). As
shown in Table (1), the fund value is decreasing in volatility. However, the fair
pricing is close to the benchmark value. For example, for a standard volatility
level σ = 20%, it is only equal to 98.92% (−1.08% of the benchmark value equal
to 100).

Table 1: Fund Values as function of volatility

Fund Value
15% 99.93
20% 98.92

Volatility 25% 97.61
30% 96.16
35% 94.64
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3.2 Truncated OBPI

We analyze now a left truncated OBPI. It is equal to a standard OBPI, except
that it does not provide the same guarantee level for underlying asset values
smaller than a given value. There exists a step in the portfolio profile. We find
an average fair value of −3.3% for such products in the French sample (for usual
volatility values).

3.2.1 Fund Fair Pricing

To illustrate this case, we examine the following fund:15

• After the 5 years (denoted T ) of the management period, the initial port-
folio value V0 is guaranteed: VT ≥ V0.

• This value is increased by 75% of the quarterly average performance, com-
puted since inception, of the DJ Eurostoxx 50 Index (without dividends)
denoted S hereafter:

— If
Si/4
S0

− 1 > +15% (i = 1, ..., 20) then
Vi/4
V0

− 1 = Si/4
S0

− 1,

— If −15% ≤ Si/4
S0

− 1 ≤ +15% (i = 1, ..., 20) then
Vi/4
V0

− 1 = +15%,

— If
Si/4
S0

− 1 < −15% (i = 1, ..., 20) then
Vi/4
V0

− 1 = 0%.

Thus, the quarterly virtual payoff of this fund is given by:

{
0.75 120

(
(H − 1)V0 + (Si/4 −HS0)+ V0

S0

)
, i = 1, ..., 20 if Si/4 ≥ L.S0,

0 else.

Figure (2) displays the features of the quarterly performance of this fund
with L = 0.85 and H = 1.15.

We use the term "virtual payoff" because these payoffs are not received by
the investors at the time they occur but rather at maturity. Thus, these payoffs
occur at time i/4 and do not earn any interest to the investor until maturity.
Therefore, we must account for this and discount these payoffs over the time
period [i/4, T ]. At maturity, the initial portfolio value is guaranteed meaning

that an amount equal to V0e
−rT must be invested in the riskless asset at the

riskfree rate, r (assumed constant over time). Additionally, in exchange of the
dividends received by the fund, the investor obtains an insurance on his initial
investment value.

15Fund AMAREO issued by Société Générale.
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Figure 2: Quarterly Return on Truncated OBPI
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Proposition 2 At inception, the arbitrage value of this fund, V0, is:
16

V0(S0) = V0e
−rT

+
1

4T

∑4T

i=1
e−r(T−

i
4
)e−r

i
4EQ

[
I[Si/4≥L.S0]0.75

{
(H − 1)V0 + (Si/4 −HS0)+

V0
S0

}]
,

which is equivalent to:

V0(S0) = V0e
−rT +

0.75

4T
V0× (1)

∑4T

i=1
e−r(T−

i
4
)

[
e−r

i
4 (H − 1) [1−N (d (i/4, L))] +Call (i/4, S0,HS0, r, σ)

1

S0

]
.

with: d (i/4, L) =
Ln(L)−

(
r−σ2

2

)
i
4

σ
√
i/4

.

3.2.2 Numerical Example

The following values are used for the financial market parameters: σ = 25%
and r = 4.55%17 . The fund has a time to maturity of 5 years and is such that
L = 0.85 and H = 1.15. Table 2 displays the Black-Scholes values of the 20
quarterly payoffs that entered into this structured product.

16See Appendix 2.
17This is the continuous time interest rate corresponding to the discrete one, r = 4.65%.
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Table 2: BS Value of the 20 Calls at inception

Time
to maturity

Payoff
Time

to maturity
Payoff

0,25 0.4387 2,75 0.8429
0,50 0.4596 3,00 0.8878
0,75 0.4949 3,25 0.9328
1,00 0.5353 3,50 0.9780
1,25 0.5777 3,75 1.0234
1,50 0.6211 4,00 1.0691
1,75 0.6650 4,25 1.1149
2,00 0.7093 4,50 1.1610
2,25 0.7537 4,75 1.2074
2,50 0.7982 5,00 1.2541

TOTAL 16.52

Moreover, V0e
−rT = 79.672. Thus V0(S0) = 96, 197. Thus, if the fund is sold

$100 about $3.80 are taken from investors. Notice that front-end sales loads are
already paid by investors. Additionally, we can consider that the management
fees correspond to the dividends received by the fund but not transferred to
investors. But recall that our pricing methodology assumes a perfect market.
Thus, what would be a plausible impact of the inclusion of various market
imperfections on the fund value? Are the $3.80 a credible amount?

In Table 3, the fund values are displayed when both the volatility and the
riskfree rate are allowed to vary18 .

Table 3: Fund Values as function of volatility and riskfree rate

Volatility
15.00% 20.00% 25.00% 30.00% 35.00%

3.00% 99.32 100.59 102.06 103.66 105.33
Riskfree 3.50% 97.52 98.78 100.22 101.79 103.43

4.00% 95.77 97.02 98.43 99.97 101.58
Rate 4.50% 94.08 95.31 96.70 98.21 99.79

5.00% 92.44 93.66 95.03 96.50 98.05

In Table 4, the fund values are displayed when the time to maturity increases.
The base case for other parameter values is used.

Figure (3) shows that the fund value tends to a limit as maturity increases.
Notice that the same shape would be obtained with the volatility.
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Table 4: Fund Values as function of time to maturity

Time
to maturity

Fund Value
Time

to maturity
Fund Value

5 96,20 13 113,60
6 97,17 14 116,89
7 98,57 15 120,33
8 100,35 16 123,90
9 102,47 17 127,58
10 104,89 18 131,35
11 107,57 19 135,20
12 110,49 20 139,11

Figure 3: Fund Value as a function of Maturity

50

100

150

200

250

300

350

0 50 100 150 200

It is interesting to notice that other kinds of structuring leads to about the
same pricing. For instance, asset management firms sell funds which offer a
performance over a 5 years period equal to the average of the quarterly perfor-
mance (if positive) of a reference index. In this case, the initial value of this
fund can be determined.

Proposition 3 At inception, the arbitrage value of this fund, V0, is given by:

V0(S0) = V0e
−rT +

1

4T

∑4T

i=1
e−r(T−

i
4
)e−r

i
4EQ

[
(Si/4 − S0)+

]

= V0e
−rT +

1

4T

∑4T

i=1
e−r(T−

i
4
)Call (i/4, S0,HS0, r, σ) (2)

18 In Table 3, we report the discrete time parameter values for the interest rate.
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4 Compensating Variations

In this section, we introduce the quantitative index of investor’s satisfaction
introduced by de Palma and Prigent (2008, 2009) to measure the utility loss
when the optimal portfolio of the client is not available on the market (see also
Anderson et al. 2008). It is also applied to measure the utility loss of the finan-
cial institution that bears the risk when issuing the product It is based on the
standard economic concept of compensating variation. If an investor with risk
aversion γ and initial investment V0 can buy his optimal portfolio, his expected
utility is E[Uγ(V

∗
T );V0]. If this investor selects an optimal portfolio among only

those available, then he will get the expected utility E[Uγ(V
∗(λ)
T );V0]. He will

get the same expected utility provided that he invests an initial amount Ṽ0 ≥ V0.
Therefore, this investor requires a compensation Ṽ0 which satisfies:

E[Uγ(V
∗
T );V0] = E[Uγ(V

∗(λ)
T ); Ṽ0]. (3)

The amount Ṽ0 is in line with the certainty equivalent concept in expected
utility analysis. It can be viewed as an “implied initial investment” necessary
to maintain the level of expected utility. The same analysis can be applied to
the banker. We illustrate numerically the theoretical solutions for banker and
investor having both CRRA utilities.19 In what follows, we examine three main
cases: The first one corresponds to an investor who has no direct access to the
financial derivatives market. Due to the suboptimality of his standard buy-and-
hold portfolio, he may be ready to bear (theoretically) an additional cost to
can include options in his portfolio. The second case deals with the banker’s
compensating variation due to riskier financial position in the presence of the
investor’s guarantee and/or the bad fit of his resulting constrained portfolio to
his own risk aversion. Finally, we take the standard OBPI strategy as benchmark
to both evaluate the investor’s and banker’s compensating variations.

4.1 Compensating variation of buy-and-hold strategy w.r.t.
optimal portfolio with derivatives

In this subsection, we consider an investor who can only use a buy-an-hold
strategy if he has no access to the financial derivatives market. We determine
the compensating variation with respect to the true optimal payoff with deriv-
atives provided by the bank. The level of the compensating variation provides
a measure of the monetary loss, due to this friction. Conversely, they allow to
measure the interest of the investor to use financial intermediates to manage
their portfolios, which provides values of the cost they may accept to benefit
from such financial service.20

19The other cases (logarithm and CARA) can be illustrated as well. However, CRRA
utilities generally fit better the true utility. Additionnally, as shown for the CRRA case, the
numerical values of the compensating variations are sufficiently significant to illustrate them.

20We assume that the investor cannot get a portfolio payoff which involves derivatives
covered by a dynamic strategy in continuous-time. Thus, if he wants to include options in
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In what follows, we assume that the risky asset price is a geometric Browbian
motion (GBM) given by:

dSt = St(µdt+ σdWt). (4)

Our numerical base case corresponds to the following financial parameters:

r = 3%;µ = 7%;σ = 20%;B0 = 1;S0 = 100;T = 5;V0 = 1000; p = 1, (5)

where p denotes the guaranteed proportion.

4.1.1 The optimal buy-and-hold strategy

The investor i maximizes his expected utility:

Maxwi,SE [U [Vi,T ]] ,

where Vi,T denotes the portfolio value at maturity T and wi,S corresponds to the
proportion of wealth invested on the risky asset S. The buy-an-hold condition
consists in fixing shares during the management period. Therefore, we have:

Vi,T = Vi,0 ×
(
erT +wi,S(e

XT − erT )
)

The first-order condition implies:

E
[
U ′(Vi,T )(e

XT − erT )
]
= 0,

which is equivalent to:

∫
U ′
[
Vi,0 ×

(
erT +w∗i,S(e

x − erT )
)]
(ex − erT )fX(x)dx = 0, (6)

where fX denotes the pdf of the random variable X = (µ− 1/2σ2)T + σWT .
We can also introduce a specific guarantee constraint and solve the previous

maximization problem under this additional condition. If the investor has not
access to derivatives, then his utility level is smaller than when the bank provides
his true optimal portfolio with derivatives. In what follows, we illustrate the
compensating variation corresponding to this particular case.

4.1.2 The compensating variation for the buy-and-hold strategy

For the CRRA case with guarantee, Bertrand et al. (2001) prove that the
optimal portfolio payoff is given by:

Vi,T = piVi,0 +Max [αiVi,0S
mi

T − piVi,0, 0])
his portfolio, he must either buy them on the financial market (with a given additional cost),
either buy part of a structured fund managed by a financial institution (assumed here to be
a bank for simplicity).
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In this framework, Equation (3) is equivalent to:

E[Uγi(piVi,0+Max [αiVi,0S
mi

T − piVi,0, 0])] = E[Uγi(Ṽi,0×
(
erT +w∗i,S(e

x − erT )
)
)],

(7)
where αi is determined from the budget equation:

EQ (piVi,0 +Max [αiVi,0S
mi

T − piVi,0, 0]) = V0erT

Proposition 4 Under the CRRA assumption Uγi(v) =
v1−γi
1−γi

, we deduce that

the CV, equal to the ratio Ṽi,0/Vi,0, is given by:

Ṽi,0
Vi,0

=



EP

[
(pi +Max [αiS

m
T − pi, 0])(1−γ)

]

EP[(erT +w∗i,S [e
x − erT ])(1−γ)]




(
1

1−γi

)

.

The numerical values of the CV Ṽ0
V0

are displayed in Table 5. We consider
three values for both the drift µ and the volatility σ. Five levels of relative
risk aversion (RRA) are introduced: γ = 0.5 and 2 ("aggressive investors");
γ = 5 (moderate investor); γ = 7 and γ = 10 (more conservative investors).
The parameter wi,S denotes the optimal weights invested on the risky asset for
the buy-and-hold strategy without insurance constraint. The parameter wci,S
denotes the optimal weights invested on the risky asset for the buy-and-hold
strategy with insurance constraint (the upper bound to guarantee the capital
at maturity corresponds to 1− pie−rT with the insured proportion pi equal to
1). The compensating variation (CV) is expressed in term of percentage of the
true initial wealth invested Vi,0 on the financial market.

Table 5: Compensating Variations for the CRRA case, w.r.t. the standard
buy-and-hold portfolio

RRA γ µ = 5% a n d σ= 20% µ = 7% a n d σ= 20% µ = 10% a n dσ= 20%
wS w

c
S C V wS w

c
S C V wS w

c
S C V

0 .5 1 0 0% 1 4% 6 .4 5% 1 0 0% 1 4% 6 .4 2 % 1 0 0% 1 4% 1 5 .8 %

2 5 5 % 1 4% 2 .3 7% 8 0% 1 4% 2 .3 7 % 1 0 0% 1 4% 6 .1 8 %

5 0% 0% 2 % 3 0% 1 4% 1 .0 1 % 4 5% 1 4% 2 .2 4 %

7 0% 0% 1 .5 6 % 1 0% 1 0% 1 .1 6 % 3 3% 1 4% 1 .3 9 %

1 0 0% 0% 0 .5 9 % 0% 0% 1 .3 4 % 0% 0% 2 .8 8 %

RRA γ µ = 7% a n d σ= 15% µ = 7% a n d σ= 20% µ = 7% a n d σ= 25%
wS w

c
S C V wS w

c
S C V wS w

c
S C V

0 .5 1 0 0% 1 4% 1 5 .7 1 % 1 0 0% 1 4% 6 .4 1 % 1 0 0% 1 4% 5 .0 7 %

2 1 0 0% 1 4% 6 .1 8 % 8 0% 1 4% 2 .3 7 % 5 0% 1 4% 2 .4 3 %

5 4 5% 1 4% 2 .2 4 % 3 0% 1 4% 1 .0 1 % 0% 0% 2 %

7 3 4% 1 4% 1 .3 8 % 1 0% 1 0% 1 .1 6 % 0% 0% 1 .7 3 %

1 0 0% 0% 2 .9 2 % 0% 0% 1 .3 4 % 0% 0% 1 .5 5 %
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From Table (5), we note that the compensating variation can be relatively
high (up to 15.8%). It is not a monotone function with respect to financial
parameters µ and σ. However, for weak relative risk aversion (γi = 0.5 or 2),
the values of compensating variation are higher than 2.37%. This is due to
the fact that these investors are rather agressive once the guarantee is fixed.
Therefore, they suffer from not having a strictly convex portfolio profile when
using a buy-and-hold strategy. For conservative investors (γi = 7 or 10), the
utility loss is less severe since they do not try to make the best benefit from
the performance of the risky asset. For a moderate investor (γi = 5), the
compensating variation is about 2%.

4.2 Compensating variations with constraints on the banker

In what follows, we assume that the banker provides exactly the optimal payoff
with insurance constraint of the customer. Therefore, the banker may bear a
utility loss for not having his own optimal portfolio profile. Indeed, his portfolio
profile hb is determined from derivative market clearing conditions. Therefore,
we have:

hb,T = qSST + qBBT − hi,T , (8)

where qS and qB are the shares respectively invested by the banker on the risky
asset S and the riskless asset B, on one hand to partially hedge the payoff hi
sold to the investor and, on the other hand, to partially optimize the expected
utility of his financial position hb.

The parameters qS and qB are linked also to the budget constraint of the
banker: Vb,0 = qSS0 + qBB0 − Vi,0 and his regulatory risk constraint:

P [Vb,T − Vb,0 + V aR (ε) ≤ 0] ≤ ε, (9)

where V aR (ε) denotes the Value-at-Risk of the financial position at the given
probability level ε.

Additional criteria can be introduced to determine the shares qS and qB:

Criterion 1: The banker tries to minimize the ratio of the reserve amount
upon the initial investment necessary to prevent losses at the given probability
level ε.

Criterion 2: (“delta-neutrality”) The portfolio manager (the banker) can try
to hedge the investor’s portfolio profile by setting:

qS =
∂hi,0
∂S0

. (10)

It means that the banker searches for a riskless portfolio but can only hedge
the investor’s risky position by a static position. Therefore, this leads only to a
partial hedging with a residual risk, according to risky asset fluctuations.
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4.2.1 Compensating variations with VaR constraints on the banker

The VaR condition can be detailed as follows:

P [qSST + qBBT − hi,T − Vb,0 + V aR (ε) ≤ 0] ≤ ε (11)

which is equivalent to: (recall that qSS0 + qBB0 − Vi,0 = Vb,0, thus qB =
(Vi,0 + Vb,0 − qSS0)/B0).

P
[
qS
(
ST − S0erT

)
− hi,T + erTVi,0 +

(
erT + δ − 1

)
Vb,0 ≤ 0

]
≤ ε,

with V aR (ε) /Vb,0 = δ.
Set:

c = −qSS0erT +
(
erT − pi

)
Vi,0 +

(
erT + δ − 1

)
Vb,0.

Then, the VaR condition is equivalent to:

P [qSST + Vi,0Max(αiS
mi

T − pi, 0) + c ≤ 0] ≤ ε. (12)

The previous probability (12) is given by:

E
[
IqSs+Vi,0Max(αismi−pi,0)+c≤0

]
.

In this framework, the characterization of the banker’s compensating varia-
tion CVb is determined from the equality:

E[U
b
(h∗

b,T
);Vb,0)] = E[Ub

(hb,T ); Ṽb,0], (13)

where h∗
b,T

denotes the true optimal payoff for the initial invested amount Vb,0.
Assume that both the banker and the investor have CRRA utilities with

respective RRA γb and γi. We consider both three values for the drift µ (µ =
4%;µ = 7%;µ = 15%) and for the volatility σ (σ = 10%;σ = 20%;σ = 30%).
Five levels of the investor’s relative risk aversion (RRA) are introduced: γi = 0.5
and 2 ("aggressive investors"); γi = 5 (moderate investor); γi = 7 and 10 (more
conservative investors). For the banker, we assume the following relative risk
aversions: γb = 0.1, 0.5, 2, 5 and 10. We choose the standard probability level:
ε = 1%. For the ratio , we set δ = 5%.21

In Appendix 4, figures about both investor’s and banker’s payoffs are dis-
played to illustrate the impact of expected risky asset return µ and volatility
σ on the portfolio profiles. We note for example that for high values of µ or
weak values of σ (thus high values of Sharpe ratio, which implies rather good
performance of the financial market), the constrained banker’s payoff can be, on
one hand negative for risky asset values far from the spot value S0, and, on the
other hand, decreasing when the risky asset price rises significantly (see Figures
A.4.3 and A.4.4). On the contrary, for small risky asset prices or high volatility
values (thus small values of Sharpe ratio, which implies weak performance of the

21 If MinqS ,qBV aR(ε)/Vb,0 ≥ δ, we choose the pair (qS , qB) that minimizes V aR(ε)/Vb,0.
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financial market), the constrained banker’s payoff is most of the time increasing
for risky asset values far from the spot value S0 (see Figures A.4.2 and A.4.5).

Due to Relation (8), the expected utility of the banker when accepting to
sell the investor’s profile is given by:

1

1− γb
E
[
(qSST + qBBT − (pi +Max [αiSmi

T − pi, 0])Vi,0)1−γb
]
.

His expected utility for his best strategy is given by:

1

1− γb
E
[
(αb × Smb

T )
1−γb

]
.

To compensate (theoretically) the non optimality of first portfolio, the banker
must invest a higher initial amount Ṽb,0. Therefore, we deduce:

Proposition 5 The CV equal to the ratio Ṽb,0/Vb,0 is given by:

Ṽb,0
Vb,0

=




E
[
(αb × Smb

T )1−γb
]

E

[(
qSST+qBBT−(pi+Max[αiSmi

T −pi,0])Vi,0
Ṽb,0

)1−γb]




(
1

1−γb

)

.

The numerical values of the CV
Ṽb,0
Vb,0

are displayed in Table (6), which pro-

vides the CV values for the VaR criterion. We set V0,b = 1000.22 For the banker,
we assume the following relative risk aversions: γb = 0.1, 0.5, 2, 5 and 10. We
can see that for high Sharpe type ratio due to high return (µ−rσ2 = 3 for the
case µ = 15% and σ = 20%), the (theoretical) CV is very high (except for the
less risky position corresponding to γi = 10 and γb = 10). This is mainly due
to the high risk of the constrained banker’s payoff, due to the convexity of the
investors’ payoff and/or his additional guarantee demand. Indeed, in this case,
the static VaR hedge is inefficient (recall that T = 5 years) and the banker’s risk
is too high, which implies very high CV to theoretically compensate this risk
level. For high Sharpe type ratio due to small volatility (µ−rσ2 = 4 for the case
µ = 7% and σ = 10%), the CV lies between 0.2% and 10%. For γb = 10, the CV
value is about 2%. These CV values are much smaller than previous ones, since
the volatility risk is small. For more standard Sharpe type ratio (µ−rσ2 = 1 for
the case µ = 7% and σ = 20%), the (theoretical) CV can be very high for weak
RRA γb of the banker (γb = 0.1; 0.5) and/or for weak RRA γi of the investor.
However, if we assume that the banker does not search for high returns from
his investment Vb,0 but rather for total returns that are almost riskless, then his
RRA γb must be relatively high, for instance γb = 10. In that case, his CV lies

22 It corresponds to the amount invested by the investor and allows to partially hedge the
risk due to the investor’s profile. Note that other banker’s amount (for instance twice) do not
change substantially the main conclusion of this study.
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between 4.7% and 7.5%, except for the riskier case (γi = 0.5). For relatively
small Sharpe type ratio (µ−rσ2 = 4

9 , for the case µ = 7% and σ = 30%), the CV is
still high (about 23%) since the volatility is also very significant (σ = 30%). Fi-
nally, for small Sharpe type ratio (µ−rσ2 = 1

4 , for the case µ = 4% and σ = 20%),
the CV value lies mainly between 4% and 9%. This is due in particular to the
bad performance of the financial market for the investor.

Table 6: CV CRRA (banker) VaR constraint
RRA µ = 4% a n d σ= 20% µ = 7% a n d σ= 20% µ = 15% a n d σ= 20%
γi/γb 2 5 10 2 5 10 2 5 10
0 .5 4.42% 4.85% 6% 47 % 3 2% 2 0 % ×65 ×20 ×5 4

2 4.88% 6.98% 9.83% 6.5% 4 .6 % 4.7% ×28 ×10 ×20
5 4.47% 6.32% 8.97% 5.2% 5.3% 5.4% ×1.36 13% 6.5%

10 4.33% 6.09% 8.54% 4.8% 4.9% 7.5% ×1.26 7.5% 5%

RRA µ = 7% a n d σ = 10% µ = 7% a n d σ = 20% µ = 7% a n d σ = 30%
γi/γb 2 5 10 0.1 0.5 2 5 10
0 .5 7.72% 7.75% 8 .2% 83% 85% 26% 28% 34%

2 10.6% 9 .5% 9 .1% 69% 19.7% 23% 24.5% 27%

5 26% 13% 9.8% 64% 16% 21.8% 23.7% 26.7%

10 8.8% 0.22% 1.84% 64% 16% 21.3% 23% 25.8%

4.2.2 Compensating variations with risk-neutral hedge constraints
on the banker

Assume the delta-neutrality characterized by the condition: qS =
∂Vi,0
∂S0

. Here,

since we have Vi,0 =
(
pie

−rTVi,0 +Ci
)

where denotes the initial value of the
power call Max [αiVi,0S

mi

T − piVi,0, 0].

Lemma 6 Assume that S is the geometric Brownian motion given in (4). Then

the share qS =
∂Vi,0
∂S0

is given by:

qS = αiVi,0
(
miS

mi−1
0 exp

[
1/2 σ2mi(mi − 1)T

])
N
[
d1

(
Ŝ0, K̂, σ̂, r̂

)]
, (14)

where:

Ŝ0 = Smi
0 exp

[
1/2 σ2mi(mi − 1)T

]
, K̂ = pi/αi,

σ̂ = miσ, and r̂ = r.

We illustrate now numerically this particular case for our numerical base
case (5). For the numerical base case, we get the following investor and banker
profiles: the banker and the investor have CRRA utilities with respective RRA
γb and γi. In Appendix (A.5), we illustrate both the investor’s and banker’s
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portfolio profiles. We consider both three values for the drift µ (µ = 4%;µ =
7%;µ = 15%) and for the volatility σ (σ = 10%;σ = 20%;σ = 30%). Five
levels of the investor’s relative risk aversion (RRA) are introduced: γi = 0.5
and 2 ("aggressive investors"); γi = 5 (moderate investor); γi = 7 and 10 (more
conservative investors). For the banker, we assume the following relative risk
aversions: γb = 0.1, 0.5, 2, 5 and 10.

In Appendix 4, figures about both investor’s and banker’s payoffs are pro-
vided to show the influence of expected risky asset return µ and volatility σ
on the portfolio profiles. We note for example that the banker’s payoff is most
of the time positive except for weak RRA γi of the investor and/or high risky
expected return µ. However, for high risky expected return µ, it is still positive
for small RRA γi (for example, γi = 10 in Figure A.5.3). For small volatility
(σ = 10%) and small RRA γi (for example, γi = 0.5 in Figure A.5.4), the
banker’s payoff is flat. Note also that most of the time, it decreasing from a
given value of the spot price S0.

We now examine the numerical values of the CV
Ṽb,0
Vb,0

. The numerical values

of the CV Ṽb,0
Vb,0

are displayed in Table (7), which provides the CV values for

the risk-neutral hedge criterion. We still set V0,b = 1000. We can see that for
high Sharpe type ratio due to high return (µ−rσ2 = 3 for the case µ = 15% and
σ = 20%), the (theoretical) CV is very high (except for the less risky position
corresponding to γi = 10 and γb = 10. In that case, the CV is equal to 5.4%).
As for the VaR constraint, this is due to the high risk of the constrained banker’s
payoff, due to the convexity of the investors’ payoff and/or his additional guar-
antee constraint.23For high Sharpe type ratio due to small volatility (µ−rσ2 = 4
for the case µ = 7% and σ = 10%), the CV lies between 6% and 100%. For
the most convenient banker’s RRA γb = 10, the CV value is about 12%. These
CV values are smaller than previous ones when γb = 10, since the volatility risk
is small. For more standard Sharpe type ratio (µ−rσ2 = 1 for the case µ = 7%
and σ = 20%), the (theoretical) CV is can be very high for weak RRA γb of
the banker (γb = 0.1; 0.5) and/or for weak RRA γi of the investor. When the
banker’s RRA γb is relatively high (more convenient case), for instance γb = 10,
his CV is about 4% or 5%, except for the riskier case (γi = 0.5). For relatively
small Sharpe type ratio (µ−rσ2 = 4

9 , for the case µ = 7% and σ = 30%), the CV is
still high (about 20%) since the volatility is also very significant (σ = 30%). Fi-
nally, for small Sharpe type ratio (µ−rσ2 = 1

4 , for the case µ = 4% and σ = 20%),
the CV value lies mainly between 3% and 4.5%. As for the Var constraint case,
this is due for instance to the bad performance of the financial market for the
investor.

23As in previous VaR case, the static risk-neutral hedge is rather inefficient in that case
(recall that T = 5 years). Therefore, the banker’s risk is too high, which implies very high
CV to theoretically compensate this risk level.
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Table 7: CV CRRA (banker) Risk-neutral hedge
RRA µ = 4% a n d σ= 20% µ = 7% a n d σ= 20% µ = 15% a n d σ= 20%
γi/γb 2 5 10 2 5 10 2 5 10
0 .5 4.37% 4.35% 4.6% 47 % 3 6% 4 2 % 7 7% 9 3 % 9 6%

2 3.7% 3.6% 3.54% 8.44% 5.9% 5.2% 7 5% 9 3 % 9 6%

5 3.5% 3.33% 3.32% 8% 5.5% 4.7% 46% 20% 13%

1 0 3.4% 3.23% 3.21% 7.78% 5.1% 4.3% 45% 11.6% 5.4%

RRA µ = 7% a n d σ = 10% µ = 7% a n d σ = 20% µ = 7% a n d σ = 30%
γi/γb 2 5 10 0.1 0.5 2 5 10
0 .5 68% 86% 91% 91 % 8 7% 2.55% 2.51% 2.4%

2 69% 87% 92.8% 57 % 2 0 .5% 2 0% 2 0 % 1 9 .8 %

5 78% 99% 5.5% 6 9 .2 % 21.6% 20.1% 20 % 1 9 .9 %

1 0 84% 6% 12% 72.4% 21.15% 19.9% 19.9% 19.8%

Note also that if we compute other CV numerical values, we get in particular
the following values for the small volatility case (µ = 7% and σ = 10%):

CV [γi = 0.5, γb = 0.1] ≃ 0% and CV [γi = 0.5, γb = 0.5] = 7.28%
CV [γi = 2, γb = 0.1] ≃ 0% and CV [γi = 2, γb = 0.5] = 7.4%
CV [γi = 5, γb = 0.1] ≃ 0% and CV [γi = 5, γb = 0.5] = 8.4%
CV [γi = 10, γb = 0.1] ≃ 0% and CV [γi = 10, γb = 0.5] = 9%

The small CV values for γb = 0.1 are due to the better fit of the risk-neutral
hedge banker’s portfolio to his true optimal portfolio for small volatility when
he has little relative risk-aversion.

4.3 Compensating variations of both the investor and the
banker with respect to the standard OBPI case

In this subsection, we consider an investor who cannot exactly get his optimal
portfolio. As emphasized in de Palma and Prigent (2008, 2009), typically finan-
cial institutions provide a limited number of standardized portfolios which do
not exactly match investor preferences. Mistreating the “demand side” can also
yield to significant utility losses for the investor. In what follows, we illustrate
this feature for investors who can only buy the standard OBPI strategy. This
financial product with guarantee is the first one (see Leland and Rubinstein,
1976), and serves as fundamental example to construct other guarantee funds.

We determine the compensating variation with respect to the true optimal
payoff. The levels of compensating variation provide a measure of the monetary
loss, due to of this type of friction. We also examine the CV for the banker in
this framework.

The OBPI method consists basically in purchasing an amount qi.Ki invested
on the money market account, and qi shares of European call options written
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on asset S with maturity T and exercise price Ki. The value V OBPIi,t of this
portfolio at any time t in the period [0, T ] is:

V OBPIi,t = qi
(
Kie

−r(T−t) +C(t,Ki)
)
, (15)

where C(t, x) denotes the no-arbitrage value of a European call option with
strike x, calculated under a given risk-neutral probability Q (if coefficient func-
tions µ, a and b are constant, C(t, x) is the usual Black-Scholes value of the
European call). Note that, for all dates t before T , the portfolio value V OBPIi,t

is always above the deterministic level qiKie
−r(T−t). The investor is still will-

ing to recover a percentage p of his initial investment Vi,0. Then, the portfolio
manager has to choose the two appropriate parameters, qi and Ki.

- First, since the insured amount is equal to qi.Ki, it is required that Ki

satisfies the relation:24

piVi,0 = piqi(Ki.e
−rT +C(0,Ki)) = qiKi, (16)

which implies that:
C(0,Ki)

Ki
=
1− pie−rT

pi
. (17)

Therefore, the strike Ki is an increasing function Ki (pi) of percentage pi.
- Second, the number of shares qi is given by:

qi =
Vi,0

Kie−rT +C(0,Ki)
. (18)

Thus, for any investment value Vi,0, number of shares qi is a decreasing function
of percentage pi.

For our numerical base case (5), we get: Ki = 119.3 and qi = 8.38.

Next figure illustrates both the investor’s and banker’s portfolio profiles when
the OBPI portfolio is provided to the investor. For the banker, we consider the
risk-neutral hedge portfolio with initial investment Vb,0 = 1000.

As it can be seen, the investor’s guarantee (Vi,0 ≥ Vi,T ) implies that the
banker’s constrained portfolio may suffer from significant losses for bearish mar-
ket (for example if ST ≤ 0.8 S0,then the loss is higher than 10%) or when the
risky asset price ST grows highly (ST ≥ 1.45 S0).

We compute now the CV for both the investor and the banker, with same
RRA values γi and γb as previously. Recall that the OBPI strategy is the
optimal investor’s portfolio if and only if γi = 1/(

µ−r
σ2 ) (in that case, the power

mi is equal to 1). Apart this case, the investor does not receive his true optimal

24This relation can also be adjusted to take account of the smile effect.
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Figure 4: OBPI Profiles

portfolio and bears utility losses. The banker also has not his true optimal
portfolio. Additionally, he may suffer from portfolio value losses. Consequently,
we must examine both their compensating variations. They are displayed in
next table. We note that in this framework, the CV is generally much higher
for the banker than the investor. However, if we consider the standard case
(risky asset return µ = 7%, which is the usual value on long term horizon and
volatility σ = 20%), then the investor’s and banker’s compensating variations
are almost equal. Roughly speaking, it means that these two CV compensate
each other, which implies that only small CV values can be required by the
banker (if any).

Table 8: CV for the CRRA case (OBPI)
RRA σ = 20% µ = 7%
γi/σ µ = 4% µ = 7% µ = 15% σ = 10% σ = 20% σ = 30%

0 .5 5.36% 15.2% ×2.3 ×2.1 15.2% 19.4%
2 7.52% 6.5% 21.6% 20% 6.5% 19.7%
5 11.7% 9.2% 9% 10.3% 9.2% 24.5%
1 0 14.1% 12.7% 11% 10.1% 12.7% 28.6%

RRA σ = 20% µ = 7%
γb µ = 4% µ = 7% µ = 15% σ = 10% σ = 20% σ = 30%
0 .5 ×3.2 19.5% ×6.2 ×4.2 19.5% ×3.4
2 ×2.67 7.4% ×5.9 ×3.9 7.4% ×2.4
5 ×2.82 7.1% ×6.3 ×5.6 7.1% ×2.7
1 0 ×4.1 11.4% ×6.5 5.2% 11.4% ×3.1
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5 Conclusion

Using the notion of compensating variation, we provide a quantitative measure
to evaluate the monetary loss of not having the best portfolio profile on one
hand for the clients, on the other hand for the financial institutions. Therefore,
we can evaluate the mispricing of structured products when they do not match
exactly the investors preferences. Clearly the overevaluation usually observed
depends on the risk aversion of the investor and on the specification of the finan-
cial contracts. We provide the numerical illustration of these theoretical com-
pensations for banker and investor having both CRRA utilities, through three
main cases: investor having no direct access to the financial derivatives market;
banker’s compensating variation due to riskier financial position induced by the
investor’s guarantee; and finally the standard OBPI strategy as benchmark to
both measure the investor’s and banker’s compensating variations. For standard
financial parameter values and rational relative risk aversions (it means in par-
ticular that the banker must have a significant risk aversion), the level of these
compensating variations lies between 3% and 10% for the banker’s compensating
variation, when he bears the insurance constraint of the investor. However, if
we compute both the banker’s and the investor’s compensating variations with
respect to the benchmark OBPI strategy, the two values are very close. In this
latter case, this balance between the compensating variations yields to small
compensating variations at the equilibrium.
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Appendix 1. Proof of Proposition 1.

We price this financial asset in a Black and Scholes framework by taking
the sum of the discounted expected value of the payoffs under the appropriate
unique martingale measure. We have:

V0(S0) = V0e
−rTEQ

[
1 +

(ST − S0)
S0

I[S0≤ST<2S0] + I[ST>2S0]

]
,

= V0e
−rTEQ

[
1 +

(ST − S0)
S0

I[ST≥S0] +

(
1− (ST − S0)

S0

)
I[ST>2S0]

]
,

= V0e
−rTEQ

[
1 +

(ST − S0)
S0

I[ST≥S0] −
(
ST − 2S0

S0

)
I[ST>2S0]

]
,

= V0e
−rT +

V0
S0
[Call (T, S0, S0, r, σ)−Call (T, S0, 2S0, r, σ)] .

Appendix 2. Proof of Proposition 2.

We have:

V0(S0) = V0e
−rT +

0.75

4T
×

∑4T

i=1
e−r(T−

i
4
)e−r

i
4EQ

[
I[Si/4≥L.S0]

{
(H − 1)V0 + (Si/4 −HS0)+

V0
S0

}]
,

thus:

V0(S0) = V0e
−rT +

0.75

4T
×

0.75

4T

∑4T

i=1
e−r(T−

i
4
)e−r

i
4

(
V0(H − 1)EQ

[
I[Si/4≥L.S0]

]
+ EQ

[
(Si/4 −H.S0)+

V0
S0

])
.

We need to compute the expectation of the indicator function:,

EQ

[
I[Si/4≥L.S0]

]
= Q

[
Si/4 ≥ L.S0

]
(19)

= 1−Q
[
Si/4 < L.S0

]

We adopt a simple continuous-time model where the stock index price dynamics
is given by the following stochastic process :

dSt = St[µdt+ σdWt], (20)

which implies:

St = S0 exp[(µ−
1

2
σ2)t+ σWt] (21)

where (Wt)t is a standard Brownian motion with respect to a given filtration
(Ft)t. This can be written as:

St = S0 exp[(µ−
1

2
σ2)t+ σ

√
tY ] (22)

where Y ∼ N (0, 1).
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Under Q, we have:

St = S0 exp[(r −
1

2
σ2)t+ σ

√
tY ] (23)

Thus, expression (19) becomes:

EQ

[
I[Si/4≥L.S0]

]
= 1−N [d (i/4, L)]

where d (i/4, L) =
Ln(L)−

(
r−σ2

2

)
i
4

σ
√
i/4

.

Finally, we obtain:

V0(S0) = V0e
−rT +

0.75

4T
×

∑4T

i=1
e−r(T−

i
4
)

[
e−r

i
4 (H − 1)V0 [1−N (d (i/4, L))] +Call (i/4, S0,HS0, r, σ)

V0
S0

]
.

Appendix 3. Proof of Lemma 6.
The power call Max [αiVi,0S

mi

T − piVi,0, 0] is equal to

αiVi,0Max [S
mi

T − pi/αi, 0] .

Recall that we suppose:

St = S0exp
[
(µ− 1/2σ2)t+ σWt

]
.

Thus, we have:

Smi

T = Smi
0 exp

[
mi(µ− 1/2σ2)T +miσWT

]
,

which is also equal to

Smi
0 exp

[
1/2 σ2mi(mi − 1)T

]
.exp

[
(miµ− 1/2m2

iσ
2)T +miσWT

]
.

Therefore, using the Black and Scholes formula for a standard call option with
underlying Ŝ0, strike K̂, volatility σ̂, interest rate r̂, the initial value of the
power call is given by:

N
[
d1
(
Ŝ0, K̂, σ̂, r̂

)]
−N

[
d2
(
Ŝ0, K̂, σ̂, r̂

)]
,

with:

d1

(
Ŝ0, K̂, σ̂, r̂

)
=

ln
(
Ŝ0
K̂

)
+
(
r̂ + 1

2 σ̂
2
)
T

σ̂
√
T

,

d2
(
Ŝ0, K̂, σ̂, r̂

)
= d1

(
Ŝ0, K̂, σ̂, r̂

)
− σ̂

√
T ,
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and:

Ŝ0 = Smi
0 exp

[
1/2 σ2mi(mi − 1)T

]
,

K̂ = pi/αi,

σ̂ = miσ,

r̂ = r.

Consequently, we have:

∂Vi,0
∂S0

= αiVi,0

(
∂Ŝ0
∂S0

.
∂Vi,0

∂Ŝ0

)
.

Thus we have:

∂Vi,0
∂S0

= αiVi,0
(
miS

mi−1
0 exp

[
1/2 σ2mi(mi − 1)T

])
N
[
d1
(
Ŝ0, K̂, σ̂, r̂

)]
.
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Appendix 4. (Graphical illustrations of the investor’s and bankers’s
payoffs for VaR constraints)

Fig. A.4.1. (µ = 7%, σ = 20%)
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Fig. A.4.2. (µ = 4%, σ = 20%)
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Fig. A.4.3. (µ = 15%, σ = 20%)
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Fig. A.4.4. (µ = 7%, σ = 10%)
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Fig. A.4.5. (µ = 7%, σ = 30%)
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Appendix 5. (Graphical illustrations of the investor’s and bankers’s
payoffs for delta-neutrality constraints)

Fig. A.5.1. (µ = 7%, σ = 20%)
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Fig. A.5.2. (µ = 4%, σ = 20%)
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Fig. A.5.3. (µ = 15%, σ = 20%)
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Fig. A.5.4. (µ = 7%, σ = 10%)
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Fig. A.5.5. (µ = 7%, σ = 30%)
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