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Abstract

This paper presents a new macro-financial continuous-time model for the term structure

of interest rates assuming that the spot rate converges to a certain long-term level

that depends on the business cycle. In addition, we consider that the interest rate

volatility depends on the interest rate level. In short, both the mean reversion level

and the interest rate volatility are modeled by using a harmonic oscillator. Under

these assumptions, we compute closed-form expressions for the values of different fixed

income and interest rate derivatives and for relevant risk management measures.

Keywords: square-root process, interest rates, term structure, continuous-time model, har-

monic waves, martingale.

JEL classification: G12, G13.



I Introduction

Through the time, modeling the term structure of interest rates has been the object of many

studies and the aim of attention for economists and financial institutions. Models proposed

in the academic literature can be classified in endogenous and exogenous.

Endogenous models make certain assumptions on the factors that drive the term structure

and their stochastic processes. The term structure is fully characterized by these endogenous

factors meaning that the current term structure of rates is an output rather than an input

of the model. Examples of one-factor models are Vasicek (1977), Brennan and Schwartz

(1980), or Cox et al. (1985) (CIR from now on). The main drawback of these models is

the lack of empirical realism. Consequently, these models do not fit accurately the current

term structure and, then, they do not price correctly. In order to cope with this problem, we

can find two-factor models such as Schaefer and Schwartz (1984), Longstaff and Schwartz

(1992), or Duffie and Kan (1996) and Chen (1996) who introduced a three-factor model.

On the other hand, exogenous models take the current term structure as given and derive

future changes in interest rates avoiding intertemporal arbitrage opportunities. The first

contribution was made by Ho and Lee (1986) who showed how to build a model consistent

with the initial term structure of interest rates. Since this model has some disadvantages,

their work has been extended by a number of authors such as Black et al. (1990), Hull

and White (1990, 1993), Black and Karasinski (1991), Heath et al. (1992), and Mercurio

and Moraleda (2000). We can mention the models introduced in Hull and White (1990,

1993) that extend those presented in Vasicek (1977) and Cox et al. (1985) by letting the

parameters be time-dependent and adding more flexibility to fit the initial term structure

1



of interest rates. For a thoroughly literature review on term structure models refer to, for

instance, Webber and James (2001), Brigo and Mercurio (2006), or Filipović (2009).

In this paper, we propose a new one-factor macro-financial square-root model where

the instantaneous interest rate is pulled back to a certain long term level that follows a

cyclic behavior. Under this assumption, the whole term structure of interest rates is fully

determined by the instantaneous spot rate.

The intuitive idea behind this model is that interest rates converge to a lower level during

economic recessions, while this reversion level tends to be higher during economic expansions.

We can graphically illustrate this idea in Figure 1, which shows the effective Federal funds

rates from 1955 to 2010 and indicates the recessions happening during this period.

[INSERT FIGURE 1 AROUND HERE]

In order to reflect this cyclic behavior, we model the mean reversion level using a harmonic

oscillator. Moreover, empirical evidence (see, for instance, Chan et al. (1992)) illustrated

that interest rate volatility depends on the interest rates level. Hence, we model interest rate

volatility using a similar functional form. Under these assumptions, we analytically price

zero-coupon bonds and different derivatives such as forward on bonds, European options on

zero-coupon and coupon-bearing bonds, European bond forward options, swaps, swaptions,

caps, floors, collars, and provide some risk management measures.

This paper is organized as follows. In Section 2, we introduce the new model and its

practical implications. Section 3 presents the general pricing partial differential equation

and derives closed-form expressions for different derivatives. Finally, Section 4 summarizes

the main findings and conclusions. Mathematical proofs are deferred to the Appendix.
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II A New Square-root Model for the Term Structure

In this section, we propose our model, the specific functional form for each time-dependent

parameter, and describe all the practical implications arising from this model.

Unlike many other one-factor models that allow the spot rate process for time-dependent

parameters (see, for instance, Hull and White (1990, 1993)), we now assume that the mean

reversion level depends on the business cycle. We also consider that the interest rate volatility

depends on the interest rate level. In order to model the behavior of both variables, we

assume a harmonic oscillator given as

f(t) = A sin(ϕ − wt)

where A denotes the amplitude of the wave, ϕ the offset phase, and w the temporal frequency.

We now define the mean reversion level, θt, and the volatility, σ2
t , as

θt = Aθ sin2(ϕ − wt) (1)

σ2
t = Aσ sin2(ϕ − wt) (2)

Hence, the positiveness of the mean reversion level and the interest rate volatility is guaran-

teed.

Let rt denote the instantaneous interest rate available at time t whose dynamic is

drt = µrdt + σrdWt (3)

where Wt is a standard Wiener process and

µr = k(θt − rt), k ∈ R+, σr = σt

√
rt (4)
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Looking at these expressions, it is clear that our model nests that presented in Cox et al.

(1985) making w = 0 in equations (1)-(2).

For square-root processes of this type, Cox et al. (1985) shows that the distribution

function of interest rates is a rescaled non-central chi-square with δ degrees of freedom. Note

that, whenever δ is not a positive integer, the distribution of rt is unknown. Besides, the

dimension of the process rt is given by δ = 4θtk
σ2

t
. As both waves are in phase, the model’s

dimension can be represented as δ = 4Aθk
Aσ

> 0.1

Our model guarantees the positiveness of interest rates. On this respect, Feller (1951)

studied the Fokker-Plank-Kolmogorov equation for the transition density and showed that

rt > 0 if δ ≥ 2, however it can become null if δ < 2 but will never become negative.

III Pricing

This section presents closed-form expressions for the price of zero-coupon bonds and, later,

we analytically compute closed-form formulas for the prices of different securities.

Let P (rt, t, T ) denote the price at time t of a zero-coupon bond that pays $1 at maturity

T . Then, the bond price dynamics is given by the process

dP = µP (rt, t, T )P (rt, t, T )dt + σP (rt, t, T )P (rt, t, T )dWt (5)

Applying Itô’s Lemma and using (3), it can be shown that

µP =
1

P

(
Pt + µrPr +

1

2
σ2

rPrr

)
(6)

σP = σr
Pr

P
(7)

1Note that, if sin(ϕ − wt) is equal to zero, then δ becomes indeterminate. As this case would only occur

for a infinitesimal period of time, we do not consider this possibility.
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where arguments have been omitted and subscripts in P indicate the corresponding partial

derivative. Applying standard no-arbitrage arguments, there exists a factor Λ(rt, t), called

market price of risk, such that

µP (rt, t, T ) − rt = Λ(rt, t)σP (rt, t, T ) (8)

Finally, some trivial algebra leads to the following partial differential equation (PDE)

Pt(rt, t, T ) + (µr − Λ(rt, t)σr)Pr(rt, t, T ) +
1

2
σ2

rPrr(rt, t, T ) − rtP (rt, t, T ) = 0 (9)

that must be verified by the price of any derivative.

A Bond Pricing

We consider a market price of risk such as

Λ(rt, t) =
λt
√

rt

σt

(10)

Using expressions (4)-(10), the PDE (9) becomes

Pt(rt, t, T ) + (k(θt − rt) − λtrt)Pr(rt, t, T ) +
1

2
σ2

t rtPrr(rt, t, T ) − rtP (rt, t, T ) = 0 (11)

The solution of this PDE, subject to the boundary condition P (rT , T, T ) = 1, ∀rT , is given

by the following Proposition.

Proposition 1 The price at time t of a zero-coupon bond with maturity T and $1 face value

is given by

P (rt, τ) = A(τ)e−B(τ)rt
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where

A(τ) = exp

{∫ T

t

kθtB(τ)dt

}

B(τ) =
c1MC(a, q, x) + MS(a, q, x)

1
2
(λ + k) (c1MC(a, q, x) + MS(a, q, x)) + w (c1MCP (a, q, x) + MSP (a, q, x))

a = −Aσ + (λ + k)2

4w2

q = − Aσ

8w2

x = ϕ − wt

c1 = −MS(a, q, ϕ − wT )

MC(a, q, ϕ − wT )

τ = T − t

where θt is given by (1), MC and MS represent the Mathieu cosine and sine function, respec-

tively, and MCP and MSP represent the derivative with respect to x of the Mathieu cosine

and sine function, respectively.

Proof. See the Appendix

Figure 2 compares the bond price in the CIR model against three alternatives in our

model. We check that, in our model, the bond price does not decrease monotonically with

time to maturity. Additionally, we provide much more flexibility than the CIR model with

the same analytical tractability. We can also visualize the presence of humps, which is a

very desirable effect not only here but also in any interest rate derivative.

[INSERT FIGURE 2 AROUND HERE]

The following Corollary immediately arises.

Corollary 1 As a coupon bond can be interpreted as a portfolio of zero-coupon bonds, pricing

of coupon bonds is straightforward applying Proposition 1.

6



Replacing the bond price expression obtained in Proposition 1 into (6)-(7) and using

(4)-(10), we get the next Corollary.

Corollary 2 The bond price dynamics under the no-arbitrage condition is given as

dP (rt, t, T ) = µP (rt, t, T )P (rt, t, T )dt + σP (rt, t, T )P (rt, t, T )dWt

where

µP (rt, t, T ) = rt(1 − λtB), σP (rt, t, T ) = −Bσt

√
rt

Note that, in a risk-neutral world, where λt = 0, the bond price process is a martingale.

Under this framework, the term structure is fully characterized considering the zero-coupon

bond price P (rt, t, T ) given by Proposition 1, as stated in the following Corollary.

Corollary 3 The yield to maturity, R(rt, t, T ), is given by

R(rt, t, T ) = −1

τ
ln P (rt, t, T ), τ = T − t

The short-term interest rate is defined as the instantaneous interest rate at time t, that is,

rt = lim
τ→0

R(rt, t, T ) = R(rt, t, t)

The instantaneous forward rate is given as

f(rt, t, T ) = −∂ ln(P (rt, t, T ))

∂T
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Figure 3 shows the term structure of interest rates in the CIR model and three alternatives

in our model. We can see how our model adds flexibility as we can reflect different behaviors

for the term structure.

[INSERT FIGURE 3 AROUND HERE]

For illustrative purposes, Figures 4 and 5 show how the term structure of interest rates

responds to changes in the mean reversion speed and volatility in both models. In the CIR

model, the higher the speed of mean reversion, the higher the interest rate while, in our

model, the lower the mean reversion speed, the flatter the term structure. Besides, in our

model, there is a twist in the pattern due to the cyclic behavior. In Figure 5, for both

models, the higher the volatility, the lower the term structure.

[INSERT FIGURES 4-5 AROUND HERE]

Figures 6 and 7 reflect the response of the term structure of interest rates to different

values of the mean reversion level in both models. In the CIR model, the higher the mean

reversion level, the higher the yield. In our model, it is harder to analyze this response as it

depends on three parameters. Anyway, we observe that the lower the amplitude, the flatter

and the lower the term structure. When changing the temporal frequency, it seems clear

that the higher the temporal frequency, the more humped the term structure. Finally, for

different offset phases, the curves occasionally crossover each other.

[INSERT FIGURES 6-7 AROUND HERE]

On the risk management side, we get the following corollary.
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Corollary 4 The two major bond risk measures, duration and convexity, are given as

• Duration measures the bond price sensitivity for a change in interest rates:

Duration = − 1

P (t, T )

∂P (t, T )

∂rt

= B(t, T )

• Convexity measures how duration changes with interest rates:

Convexity =
1

P (t, T )

∂2P (t, T )

∂r2
t

= B2(t, T )

with B(t, T ) as given by Proposition 1.

B Pricing of Bond Derivatives

The PDE (11) subject to the appropriate boundary condition will lead us to value any

interest rate derivative. Consider a derivative whose pay-off at time s is given by Us(rs).
2

Applying the fundamental results of Heath et al. (1992), there exists an unique equivalent

risk-neutral measure P̃ such that the value at time t of this derivative Ut can be represented

as

Ut(rt, t, s) = Ẽ
[
e−

∫ s
t

ruduUs(rs)|rt

]

where Ẽ denotes expectation with respect to the risk-neutral measure P̃ .

Let

W̃t = Wt +

∫ t

0

Λudu (12)

denote the Wiener process under P̃ . Under this measure, applying (5), (8), and (12), the

risk-neutral dynamics of the bond price is given as

dP (rt, t, s) = rtP (rt, t, s)dt + σP P (rt, t, s)dW̃t

2Obviously, if Us(rs) = 1, the previous bond price expression is obtained.
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Hence, the discount bond price process is a martingale.

Define g(P (rt, t, s)) = ln P (rt, t, s). Then, applying Itô’s Lemma, we get

dgt =
∂g(P )

∂P
dP − 1

2

∂2g(P )

∂P 2
(dP )2 =

1

P

(
rtPdt + σP PdW̃t

)
− 1

2

1

P 2
σ2

P P 2dt

where the corresponding arguments have been omitted. Integrating from 0 to t, we get

P (rt, t, s) = P (r0, 0, s) exp

(∫ t

0

rudu +

∫ t

0

σP (u, s)dW̃u −
1

2

∫ t

0

σ2
P (u, s)du

)

Hence, for each s ∈ [t, T ], the process Zs
t defined as

Zs
t =

P (rt, t, s)

P (r0, 0, s)
e−

∫ t

0
rudu = exp

(∫ t

0

σP (u, s)dW̃u −
1

2

∫ t

0

σ2
P (u, s)du

)

is a martingale. Moreover, in line with Karatzas and Shreve (1988), we get

Zs
t = 1 +

∫ t

0

σP (u, s) exp

(∫ t

0

σP (x, s)dW̃x −
1

2

∫ t

0

σ2
P (x, s)dx

)
dW̃u

Thus, by the Girsanov’s theorem, for each s ∈ [t, T ], there exists an equivalent s-forward

measure P s such that

W s
t = W̃t +

∫ t

0

σP (u, s)du (13)

where W s
t represent a standard Wiener process under P s.

Karatzas and Shreve (1988) shows that, for a random variable Y

Es [Y |Ft] =
1

Zt
t

E [Zs
t Y |Ft]

Then, the following Proposition presents the equivalent change of measure.

Proposition 2 Under P̃ , the value at time t of any derivative Ut(rt, t, s) given by

Ut(rt, t, s) = Ẽ
[
e−

∫ s
t

ruduUs(rs)|rt

]
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has an equivalent s-forward measure, P s, such that

Ut(rt, t, s) = P (rt, t, s)Ẽ

[
Zs

t

Zt
t

Us(rs)|rt

]
= P (rt, t, s)E

s [Us(rs)|rt]

where Es represents expectation under P s and

Zs
t

Zt
t

=
e−

∫ s

t
rudu

P (rt, t, s)

Moreover, the instantaneous forward rate is given as

f(rt, t, T ) = D(t, T ) + BT (t, T )rt (14)

with

D(t, T ) = −AT (t, T )

A(t, T )
=

δ

4

∫ T

t

BT (u, T )σ2
udu (15)

Applying Itô’s Lemma and using the spot rate dynamics (3), we get

df(rt, t, T ) = µfdt + σfdWt (16)

where

µf = (BTt(t, T ) − kBT (t, T )) rt, σf = BT (t, T )σt

√
rt

Similarly to Heath et al. (1992), the following restriction on the forward rate drift is verified

µf(ω, t, T ) = σf (ω, t, T )

[∫ T

t

σf (ω, t, x)dx + Λt

]

Now, replacing (13) into the forward rate process (16), we get

df(rt, t, s) = σf

[∫ s

t

σf (t, v)dv + Λt

]
dt + σf (dW s

t − Λtdt − σP dt)
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Hence, using
∫ s

t
σf (rt, t, v)dv = σP (rt, t, s) leads to

df(rt, t, s) = σf (rt, t, s)dW s
t = Bs(t, s)σt

√
rtdW s

t (17)

Then, comparing equations (16) and (17), we get

drt = ks (θs
t − rt) dt + σt

√
rtdW s

t

where

ks =
Bst(t, s)

Bs(t, s)

θs
t =

k

ks
θt

Hence, under the s-forward measure, the instantaneous interest rate follows a CIR-type

process with speed and level of mean reversion given by ks and θs
t , respectively. Then,

standard methods applied in Cox et al. (1985) can be used.

Define the state variable Xs(t) = (xs
1(t), ..., x

s
d(t)) as the process generating rs =‖ Xs ‖2.

The state variable dynamics for xs
i (t) is given by

dxs
i (t) =

1

2
σt

√
Bs(t, s)dW s

i (t)

Hence,

rs =
d∑

i=1

[
1

2

∫ s

t

σu

√
Bs(u, s)dW s

i (u) + xs
i (u)

]2

=
d

4

∫ s

t

σ2
uBs(u, s)du+ ‖ Xs(t) ‖

∫ s

t

σu

√
Bs(u, s)dW s(u)+ ‖ Xs(t) ‖2 (18)

where W s(t) = (W s
1 (t), ..., W s

d (t)) is a d-dimensional Wiener process under P s.

Note that, under P s, the instantaneous forward rate can be represented as

f(t, s) =‖ Xs(t) ‖2 +D(t, s) (19)
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Taking conditional expectations under P s in (18) and using (14)-(15) and (19), we get

Es [rs|rt] = D(t, s) + Bs(t, s)rt

Defining d = δ = 4θtk
σ2

t
and ̟ = δ

D(t,s)
rs, we obtain

Es [̟|rt] = δ +
δBs(t, s)

D(t, s)
rt

Hence, ̟ follows a non-central chi-square distribution with δ degrees of freedom and non-

centrality parameter (δBs(t, s)/D(t, s)) rt.

The value at time t of a derivative whose pay-off at time s is given by Us(rs) will read as

Ut(rt, t, s) = Ẽ
[
e−

∫ s
t

ruduUs(rs)|rt

]

Applying Proposition 2, the next Proposition arises.

Proposition 3 The value at time t of any interest rate derivative with terminal pay-off

Us(rs) is given by

Ut(rt, t, s) = P (rt, t, s)E
s [Us(̟)|rt]

where P (rt, t, s) is given by Proposition 1, Es represents expectation under P s, and

̟ =
δ

D(t, s)
rs ∼ χ2

(
δ,

δBs(t, s)

D(t, s)
rt

)
(20)

with B(s, T ) as given by Proposition 1 and D(t, s) as given by (15).

After obtaining this general closed-form expression, we analyze several particular cases:

1. Forward on zero-coupon bond
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Consider a forward contract expiring at time s written on a zero-coupon bond maturing

at time T > s and $1 face value. Then, under the s-forward measure P s, the delivery

price established at time t for this forward contract is given as

F (rt, t, s, T ) = Es [P (rs, s, T )|rt]

Then, using Proposition 3, the value of this bond forward is given as follows.

Proposition 4 The value at time t of a bond forward maturing at time s, written on

a zero-coupon bond expiring at time T and $1 face value is given by

F (rt, t, s, T ) = Es [P (rs, s, T )|rt]

=
A(s, T )e−

1

2
(ξ1−ξ2)

(
2
δ
B(s, T )D(t, s) + 1

) δ
2

where A(s, T ) and B(s, T ) are given by Proposition 1, D(t, s) as given by (15), and

ξ1 =
δBs(t, s)

D(t, s)
rt

ξ2 =
ξ1

2
δ
B(s, T )D(t, s) + 1

2. European option on zero-coupon bond

Consider a European call option maturing at time s with strike K, written on a zero-

coupon bond that matures at time T > s. Let ct(rt, s, T, K) denote the price at time

t of an European call option. Then, the boundary condition of the PDE (11) is given

by

cs(rs, s, T, K) = max{P (rs, s, T ) − K, 0}
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Under the risk-neutral measure P̃ , the price at time t of this call option is given by

ct(rt, s, T, K) = Ẽ
[
e−

∫ s
t

rudu (P (rs, s, T ) − K)+ |rt

]

Then, using Proposition 3, we price this option as follows.

Proposition 5 The price at time t of a European call option with maturity s written

on a zero-coupon bond expiring at time T and $1 face value is given by

ct(rt, s, T, K) = P (rt, t, s)E
s
[(

A(s, T )e−B(s,T )rs − K
)+ |rt

]

= P (rt, t, s)F (rt, t, s, T )χ2 (ρ2, δ, ξ2) − P (rt, t, s)Kχ2 (ρ1, δ, ξ1)

where χ2(·) denotes the non-central chi-square distribution function and

ρ1 =
δ

B(s, T )D(t, s)
ln

(
A(s, T )

K

)

ρ2 = ρ1

(
2

δ
B(s, T )D(t, s) + 1

)

ξ1 =
δBs(t, s)

D(t, s)
rt

ξ2 =
ρ1

ρ2

ξ1

with P (rt, t, s), A(·, ·), and B(·, ·) as given in Proposition 1, F (rt, t, s, T ) as given by

Proposition 4, and D(t, s) as given by equation (15).

Proof. See the Appendix.

3. European option on coupon bond

Consider a European call option that matures at time s and strike K. The underlying

asset is a coupon bond maturing at time T paying N coupons αi at times ji, i =
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1, 2, · · · , N where j1 > s, jN = T . The price of this coupon bond at time s is given as

the sum of the corresponding zero-coupon bonds, that is,

P (rs, s, T ) =
N∑

i=1

αiP (rs, s, ji) (21)

where P (rs, s, ji), i = 1, 2 · · · , N is given by Proposition 1.

Let ct

(
rt, s, {ji}N

i=1, K
)

denote the price at time t of this call option. Using (21), the

boundary condition of the PDE (11) becomes now

cs

(
rs, s, {ji}N

i=1, K
)

= max

{
N∑

i=1

αiP (rs, s, ji) − K, 0

}

Applying Proposition 3, the call option price is given as

ct

(
rt, s, {ji}N

i=1, K
)

= P (rt, t, s)E
s
[
cs

(
̟, s, {ji}N

i=1, K
)
|rt

]

= P (rt, t, s)E
s

[
max

{
N∑

i=1

αiP (̟, s, ji) − K, 0

}
|rt

]

In line with Jamshidian (1989), we find Ki, i = 1, 2, · · · , N such that

max

{
N∑

i=1

αiP (̟, s, ji) − K, 0

}
=

N∑

i=1

αi max {P (̟, s, ji) − Ki, 0} (22)

where Ki = P (κ, s, ji) and κ is the solution of
∑N

i=1 αiP (κ, s, ji) = K.3

Hence, this option can be interpreted as a portfolio of European call options on zero-

coupon bonds with “appropriate” strikes Ki as stated in the following Proposition.

Proposition 6 The price at time t of a European call option with maturity s on a

coupon bond expiring at T , paying coupons αi at times ji, i = 1, 2, · · · , N is given by

ct

(
rt, s, {ji}N

i=1, K
)

=

N∑

i=1

αi ct (rt, s, ji, Ki)

3Note that the existence of strikes Ki such that (22) has a solution is guaranteed as the bond price

decreases with the instantaneous interest rate.
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where ct (rt, s, ji, Ki) is given by Proposition 5.

4. European bond forward option

Consider a European bond forward call option maturing at time s with strike K, where

the underlying asset is a bond forward contract with expiration date Tf written on a

zero-coupon bond that matures at time Tb > Tf > s and $1 face value.

Let ct(rt, s, Tf , Tb, K) denote the price at time t of this call option.

Then, the boundary condition for the PDE (11) is given by

cs(rs, s, Tf , Tb, K) = max {F (rs, s, Tf , Tb) − K, 0}

Under the risk-neutral measure P̃ , the price at time t of this option is given as

ct(rt, s, Tf , Tb, K) = Ẽ
[
e−

∫ s

t
rudu (F (rs, s, Tf , Tb) − K)+ |rt

]

Applying Proposition 3, the price of this option is given by the following Proposition.

Proposition 7 The price at time t of a European bond forward call option that ma-

tures at time s on a forward contract expiring at time Tf written on a zero-coupon bond

maturing at time Tb and $1 face value is given by

ct(rt, s, Tf , Tb, K) = P (rt, t, s)E
s
[
(F (rs, s, Tf , Tb) − K)+|rt

]

= P (rt, t, s)Θ(rt, t, s, Tf , Tb)χ
2 (ρ2, δ, ξ2) − P (rt, t, s)Kχ2 (ρ1, δ, ξ1)

where χ2(·) denotes the non-central chi-square distribution function and

Θ(rt, t, s, Tf , Tb) =
A(Tf , Tb)e

−
1

2
(ξ1−ξ2)

((
2
δ
B(Tf , Tb)D(s, Tf) + 1

) (D(t,s)
δ

H(s, Tf , Tb) + 1
)) δ

2
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ρ1 =

2δ ln

(
A(Tf ,Tb)

K(2

δ
B(Tf ,Tb)D(s,Tf )+1)

δ
2

)

H(s, Tf , Tb)D(t, s)

ρ2 = ρ1

(
D(t, s)

δ
H(s, Tf , Tb) + 1

)

ξ1 =
δBs(t, s)

D(t, s)
rt

ξ2 =
ρ1

ρ2
ξ1

H(s, Tf , Tb) =
2δB(Tf , Tb)BTf

(s, Tf)

2B(Tf , Tb)D(s, Tf) + δ

where P (rt, t, s), A(·, ·), and B(·, ·) as given in Proposition 1 and D(·, ·) as in (15).

Remark 1 Note that P (rt, t, s)Θ(rt, t, s, Tf , Tb) can be interpreted not as the forward price

at time t, but as the price at time t of an asset paying the forward price at time s.

Corollary 5 For all the above cases, put option prices arise directly from put-call parity.

C Interest Rate Derivatives

In this subsection we focus our attention on pricing “pure” interest rate derivatives, that is,

derivatives whose underlying is directly the interest rate. We start pricing FRA’s, and then,

we move to more complicated products such as swaps, caps, floors, and collars.

1. Forward Rate Agreement

Consider a FRA with $1 notional value and maturity s, where the investor agrees to

pay a fixed interest rate K and receive a floating rate with tenor Ts − s. The floating

rate is set at time s and the net cash-flow is received at time Tr > s.

Then, under the risk-neutral measure P̃ , the FRA value at time t is given by

FRAt(rt, s, Tr, Ts, K) = Ẽ
[
e−

∫ Tr
t

rudu (R(rs, s, Ts) − K) |rt

]

18



Applying Proposition 3, the value of this FRA is given by the following Proposition.

Proposition 8 The value at time t of a FRA with $1 notional value and maturity s,

paying a fixed rate K and receiving a floating rate with tenor Ts − s, is given by

FRAt(rt, s, Tr, Ts, K) = P (rt, t, Tr)E
s [R(rs, s, Ts) − K|rt]

= P (rt, t, Tr)

[
B(s, Ts)

Ts − s
D(t, s)

(
1 +

ξ

δ

)
− ln(A(s, Ts))

Ts − s
− K

]

where

ξ =
δBs(t, s)

D(t, s)
rt

with P (rt, t, Tr) and B(t, s) as given in Proposition 1 and D(t, s) as given by (15).

2. Interest rate swap and swaption

An interest rate swap can be interpreted as either the difference between two coupon

bonds or a portfolio of FRA’s. Hence, swap valuation is a straightforward application

of Proposition 1 or 8. Moreover, swaptions can be valued applying Proposition 6.

3. Cap, floor, and collar

A cap (floor) contract guarantees to its holder a pay-off if a certain floating interest

rate is above (below) a specified rate, the cap (floor) level. Similarly to swaps, caps

and floors involve a series of regular payments, usually referred as caplets or floorlets.

Therefore, a cap (floor) can be interpreted as a portfolio of caplets (floorlets).

Consider a caplet written on a floating rate with $1 face value and maturity s. If the

caplet is exercised, the investor pays a fixed interest rate K and receives a floating rate

19



with tenor Ts − s. The floating rate is set at time s and the net cash-flow is received

at time Tr > s.

Under the risk-neutral measure P̃ , the price at time t of this caplet is given by

Caplett(rt, s, Tr, Ts, K) = Ẽ
[
e−

∫ Tr
t

rudu (R(rs, s, Ts) − K)+ |rt

]

Under the s-forward measure P s, the caplet price is given by the following Proposition.

Proposition 9 The price at time t of a caplet written on the floating rate with $1 face

value and tenor Ts − s is given as

Caplett(rt, s, Tr, TsK) = P (rt, t, Tr)E
s
[
(R(rs, s, Ts) − K)+ |rt

]

= P (rt, t, Tr)
D(t, s)B(s, Ts)

δ(Ts − s)

[
δ + ξ − 2e−

ξ
2

∞∑

n=0

(
ξ

2

)n Γ
(

δ
2

+ n + 1, ρ
2

)

n! Γ
(

δ
2

+ n
)
]

−
(

ln(A(s, Ts))

Ts − s
+ K

)
P (rt, t, Tr)

[
1 − χ2 (ρ, δ, ξ)

]

where χ2(·) denotes the non-central chi-square distribution function, Γ(·) represents the

Gamma function, and

ξ =
δBs(t, s)

D(t, s)
rt

ρ =

(
K +

ln(A(s, Ts))

Ts − s

)
δ(Ts − s)

B(s, Ts)D(t, s)

with P (rt, t, Tr) and B(t, s) as given in Proposition 1 and D(t, s) as given by (15).

In order to price a floorlet, same type of calculations as in this Proposition can be

used. Alternatively, we can use the caplet-floorlet parity.

Cap, floor, and collar prices are a straightforward application of these results.
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IV Conclusions

This paper has presented a new macro-financial continuous-time model for the term structure

of interest rates assuming that the mean reversion level of interest rates and the interest rate

volatility follow a cyclic behavior modeled by the harmonic waves functional form.

Our new model nests the original one presented in Cox it et al. (1985). In addition,

keeping the same analytical tractability as in the CIR model, we provide more flexibility.

In more detail, considering the relationship between interest rates and the business cycle,

movements in the term structure of interest rates can be modeled in a more flexible way.

For example, several humps can be easily achieved by choosing the appropriate parameters

affecting the mean reversion level, that is, the amplitude of the wave, the temporal frequency,

and the offset phase.

Consequently, we can value any contingent claim in a much more flexible framework

while still maintaining the analytical tractability. Under these assumptions, we have com-

puted closed-form expressions for prices of bonds and several fixed income and interest rate

derivatives. We have also computed some risk management measures for bonds.

The results obtained have strong practical applications for pricing and risk management

purposes and should be of special interest for traders, financial institutions and risk managers.
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Appendix of Proofs

Proof of Proposition 1

To solve equation (11), we guess an exponential-affine functional form for the bond price

P (rt, t, T ) = A(t, T )e−B(t,T )rt

with terminal conditions A(T, T ) = 1, B(T, T ) = 0. Then,

Pt =
At

A
P − BtrtP, Pr = −BP, Prr = B2P

where arguments have been omitted and subscripts in functions P, A, and B denote partial

derivatives. Replacing these expressions into (11), we get

At

A
− Btrt − B [k(θt − rt) − λtrt] +

1

2
σ2

t rtB
2 − rt = 0

with boundary condition A(T, T ) = 1, B(T, T ) = 0. Since this equation is linear in rt, we

obtain the following system of ordinary differential equations (ODEs)

Bt − (λt + k)B − 1

2
σ2

t B
2 + 1 = 0 (23)

At − kθtAB = 0 (24)

Applying standard theory for Ricatti-type equations and defining τ = T − t, the solution of

(23) is given as B(τ) = v(τ)
u(τ)

where v(τ) and u(τ) are solutions of the system

−v′(τ) + u(τ) − kv(τ) = 0 (25)

−u′(τ) + λtu(τ) +
1

2
σ2

t v(τ) = 0 (26)

Replacing the derivative of (25) into (26), we obtain the second-order ODE

v′′(τ) + bv′(τ) + e(τ)v(τ) = 0 (27)
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where b = k − λt and

e(τ) = −λtk − 1

2
Aσ sin2(ϕ − wT + wτ)

Setting v(τ) = g(τ)M(τ), expression (27) becomes

g(τ)M ′′(τ) + (2g′(τ) + bg(τ))M ′(τ) + (g′′(τ) + bg′(τ) + e(τ)g(τ))M(τ) = 0

that represents a Mathieu’s differential equation if 2g′(τ) + bg(τ) = 0. Then, we get

g(τ) = ce
1

2
(λ−k)τ

with arbitrary constant c. Then, we obtain

v(τ) = e
1

2
(λ−k)τ (c1MC(a, q, x) + c2MS(a, q, x)) (28)

where MC and MS represent the Mathieu cosine and sine functions, respectively, and

a = −Aσ + (λ + k)2

4w2
, q = − Aσ

8w2
, x = ϕ − wT + wτ

The boundary condition B(0) = 0 implies v(0) = 0. Then, choosing c2 = 1 in (28) implies

c1 = −MS(a, q, ϕ − wT )

MC(a, q, ϕ − wT )

Substituting (28) and its derivative into (25), we get

u(τ) = e
1

2
(λ−k)τ

[
1

2
(λ + k) (c1MC(a, q, x) + MS(a, q, x)) + w (c1MCP (a, q, x) + MSP (a, q, x))

]

(29)

where MCP and MSP represent the derivatives with respect to x of the Mathieu cosine and

sine functions, respectively. Therefore, using expressions (28)-(29),we get B(τ).

Finally, equation (24) immediately provides A(t, T ) = exp
{∫ T

t
kθtB(t, T )dt

}
.
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Proof of Proposition 5

From Proposition 3, we know

ct(rt, s, T, K) = P (rt, t, s)E
s

[(
A(s, T )e−

1

δ
B(s,T )D(t,s)̟ − K

)+

|rt

]

where Es represents expectation with respect to the s-forward measure P s. Hence,

ct(rt, s, T, K) = P (rt, t, s)

∫
∞

0

(
A(s, T )e−

1

δ
B(s,T )D(t,s)̟ − K

)+

dχ2 (̟, δ, ξ1)

= P (rt, t, s)

∫ ρ1

0

A(s, T )e−
1

δ
B(s,T )D(t,s)̟dχ2 (̟, δ, ξ1) − KP (rt, t, s)χ

2 (ρ1, δ, ξ1)

where χ2(·) denotes the non-central chi-square distribution function and

ξ1 =
δBs(t, s)

D(t, s)
rt

ρ1 =
δ

B(s, T )D(t, s)
ln

(
A(s, T )

K

)

Using the expression for the density function of a non-central chi-square distribution, the

integral becomes

P (rt, t, s)A(s, T )

∫ ρ1

0

e−
1

δ
B(s,T )D(t,s)̟

[
2−

δ
2 ̟

δ
2
−1e−(̟+ξ1)/2

∞∑

n=0

̟n (ξ1)
n

n!4nΓ( δ
2

+ n)

]
d̟

Considering the change of variable y =
(

2
δ
B(s, T )D(t, s) + 1

)
̟ and defining

ρ2 = ρ1

(
2

δ
B(s, T )D(t, s) + 1

)

ξ2 =
ρ1

ρ2

ξ1

we get

P (rt, t, s)F (rt, t, s, T )χ2 (ρ2, δ, ξ2)

with F (rt, t, s, T ) as given by Proposition 4.
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Proof of Proposition 9

From Proposition 3, we know

Caplett(rt, s, Tr, Ts, K) = P (rt, t, Tr)E
s
[
(R(rs, s, Ts) − K)+ |rt

]

= P (rt, t, Tr)

∫
∞

ρ

B(s, Ts)D(t, s)

δ(Ts − s)
̟dχ2(̟, δ, ξ)−

(
ln(A(s, Ts))

Ts − s
+ K

)
P (rt, t, Tr)

[
1 − χ2(ρ, δ, ξ)

]

where Es represents expectation with respect to the s-forward measure P s, χ2(·) denotes

the non-central chi-square distribution function, and

ξ =
δBs(t, s)

D(t, s)
rt

ρ =

(
K +

ln(A(s, Ts))

Ts − s

)
δ(Ts − s)

B(s, Ts)D(t, s)

Using the expression for the density function of a non-central chi-square distribution, the

integral becomes

B(s, Ts)D(t, s)

δ(Ts − s)
2−

δ
2 e−

ξ
2

∞∑

n=0

ξn

n!4nΓ( δ
2

+ n)

∫
∞

ρ

̟
δ
2
+ne−

1

2
̟d̟ (30)

Note that

∫
∞

ρ

̟
δ
2
+ne−

1

2
̟d̟ = 2

δ
2
+n+1

[
Γ

(
δ

2
+ n + 1

)
− Γ

(
δ

2
+ n + 1,

ρ

2

)]

where Γ(α, ̺) =
∫ ̺

0
e−ttα−1dt and Γ(α) ≡ Γ(α,∞). Using the Taylor expansion of the

exponential function and straightforward algebra, (30) becomes

B(s, Ts)D(t, s)

δ(Ts − s)

[
δ + ξ − 2e−

ξ
2

∞∑

n=0

(
ξ

2

)n Γ
(

δ
2

+ n + 1, ρ
2

)

n! Γ
(

δ
2

+ n
)
]
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Appendix of Figures

Figure 1: Evolution in time of the effective Federal funds rate up to 2010.
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Figure 2: Zero-coupon bond price. The parameters for the CIR model (solid line) are r0 =

0.1, k = 0.15, θ = 0.15, σ = 0.15, λ = 0. Additionally, we consider three alternatives in

our model: a) k = 0.6, Aσ = 0.0225, Aθ = 0.15, ϕ = π/4, w = 2π/90 (dashed line), b)

k = 0.4, Aσ = 0.02, Aθ = 0.25, ϕ = π, w = 2π/90 (dashed-dotted line), c) k = 0.4, Aσ =

0.03, Aθ = 0.3, ϕ = π/2, w = 2π/60 (dotted line).
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Figure 3: Term Structure of Interest Rates. CIR parameters (solid line): r0 = 0.1, k = 0.15, θ =

0.15, σ = 0.015, λ = 0. Three alternatives in our model: a) k = 0.4, Aσ = 0.002, Aθ = 0.15, ϕ =

π/2, w = 2π/160 (dashed line), b) k = 0.2, Aσ = 0.002, Aθ = 0.2, ϕ = π/2, w = 2π/60

(dashed-dotted line), c) k = 0.4, Aσ = 0.002, Aθ = 0.3, ϕ = π/10, w = 2π/30 (dotted line).
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Figure 4: Term structure for different values of k. CIR parameters: r0 = 0.1, θ = 0.15, σ =

0.015, λ = 0. Values of k (curves from the top down) are 0.5, 0.4, 0.3, 0.2, and 0.1, respectively.

Parameters for the new model: r0 = 0.1, Aσ = 0.002, Aθ = 0.3, ϕ = π/10, w = 2π/30, λ = 0.

The values of k corresponding to different curves are 0.5, 0.4, 0.3, 0.2, and 0.1.
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Figure 5: Term structure for different values of σ. CIR parameters: r0 = 0.1, θ = 0.15, k =

0.1, λ = 0. Values of σ (curves from the top down): 0.035, 0.055, 0.075, 0.095, and 0.115, respec-

tively. New model parameters: r0 = 0.1, k = 0.3, Aθ = 0.15, ϕ = π/2, w = 2π/180, λ = 0.

Values of Aσ (curves from the top down): 0.011, 0.021, 0.031, 0.041, and 0.051, respectively.
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Figure 6: Term structure for different values of θ in the CIR model and different values of Aθ

in our model. CIR parameters: r0 = 0.1, σ = 0.015, k = 0.10, λ = 0. Values of θ (curves

from the top down): 0.18, 0.17, 0.16, 0.15, and 0.14, respectively. Parameters for the new model:

r0 = 0.1, k = 0.4, Aσ = 0.002, ϕ = π/10, w = 2π/30, λ = 0. Values of Aθ (curves from the top

down): 0.55, 0.45, 0.35, 0.25, and 0.15, respectively.
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Figure 7: Term structure for different values of w and ϕ in our model. In both graphs,

r0 = 0.1, Aθ = 0.3, k = 0.4, Aσ = 0.002, λ = 0. In the first graph, ϕ = π/10, w =

2π/30, 2π/60, 2π/90, 2π/120, 2π/150. In the second graph, w = 2π/30, ϕ = π, π/10, π/6, π/4, π/2.
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