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Abstract

The recent experience from the global financial crisis has raised serious
doubts about the accuracy of standard risk measures as a tool to quantify ex-
treme downward risks. Risk measures are hence subject to a “model risk” due,
e.g., to the specification and estimation uncertainty. Therefore, regulators have
proposed that financial institutions assess the “model risk” but, as yet, there is
no accepted approach for computing such a risk. We propose a general frame-
work to compute risk measures robust to the model risk, while focusing on the
Value-at-Risk (VaR). The proposed procedure aims empirically adjusting the
imperfect quantile estimate based on a backtesting framework, assessing the
good quality of VaR models such as the frequency, the independence and the
magnitude of violations. We also provide a fair comparison between the main
risk models using the same metric that corresponds to model risk required
corrections.

Keywords: Model Risk, Value-at-Risk, Backtesting
J.E.L. Classification: C50, G11, G32.

∗We thank Carol Alexander, Arie Gozluklu, Monica Billio, Massimiliano Caporin, Rama Cont,
Christophe Hurlin, Christophe Pérignon, Michaël Rockinger, Thierry Roncalli and Jean-Michel
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1 Introduction

Risk forecast methods developed over the past couple of decades where shown
to have been mostly inadequate in the past crises. Not only failing to anticipate the
extreme risks that were realized, but also struggling to keep up as the crisis unfolded
and then unwound. It seems that the risk models got it wrong in all states of the
world. Our objective in this paper is to identify explicitly how the models failed and
make a proposal as how we should approach risk forecasting in the future. Our focus
is on Value-at-Risk (VaR), but the analysis equally applies to other risk measures.

Model risk of risk models refers both to the range of risk estimates as well as the
inability to forecast properly risk realizations. For illustration purposes, Figure 1
provides some highest and lowest VaR for a range of extreme return forecasts on the
Dow Jones Index on a century, and shows how the most popular risk measure tech-
niques fail to provide a unique and accurate risk forecast. Typically, the estimated
VaR do not vary often but when they do, they vary sharply and with some delay
relative to extreme returns.

Moreover, as emphasized in Dańıelsson et al. (2011b), the range of potential can-
didates of estimated VaR is large and the optimal model is never the same across
times1. Thus facing a large variety of plausible methods and their related model
risk, our main objective is to propose a general method to correct the imperfect risk
estimate whatever the risk model implied.

Our work can be classified into the general area of modelling the specification and
model risk. As such, our approach fits in with the general literature on model
misspecification, (e.g., Berkowitz, 2001). Unfortunately, less work exists for risk
models specifically, beyond standard backtesting. Surprisingly, financial regulators
only very recently express concerns over model risk2, even though risk models have
a clear history of failure.

This paper aims to document the model risk of extreme risk measures, based on the
effect it has on the quality of the portfolio risk quantification, and to show how to
adjust the VaR to main model risks (namely estimation, specification, identification,
granularity, data contamination and liquidity). The main idea consists in adjusting
computed risk measures (with an incremental correction) based on a backtesting
strategy assessing the main good qualities of VaR models such as the frequency, the
independence and the magnitude of past violations.

1Even if the EWMA VaR (denoted RM on Figure 1) tends to be one of the most aggressive, and
the GARCH-VaR (denoted G) the most conservative overall.

2In July 2009, the Basel Committee on Banking Supervision issued a directive (“Revisions to
the Basel II Market Risk Framework”) requiring that financial institutions quantify model risk.
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Figure 1: DJIA A and Range for a Set of Daily VaR99% Forecasts
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Source: Bloomberg; daily data of the DJIA A index in USD from 1st January 1900 to the 20th of
September 2011; computations by the authors. We use a moving window of four years (1,040 daily
returns) to dynamically re-estimate parameters for the various methods. The letters “H”, “N”,
“t”, “CF”, “RM”, “G”, “CV”, “GEV, “GPD” stand for, respectively, Historical, Normal, Student,
Cornish-Fisher, RiskMetrics, GARCH, CAViaR, GEV and GPD method for VaR calculation, and
appear on the Figure for some extrema, when they happen to be the min or the max of the set of
VaR computed on the same date.

First grasp the intuition of our approach with the following realistic illustration
based on market events around the Lehman Brothers’s collapse. Figure 2 presents
on the period from 01/01/2007 to 01/01/2009 the Peaks-over-VaR based on the 1-
year rolling daily historical VaR 99% on the S&P 500 index. These points, called
“exceptions” or hits, represent the difference between the estimated VaR and the
daily returns. This figure shows that hits (returns below the estimated VaR) are
too numerous, highly autocorrelated (clusters of violations) and, around October
2008, far from the estimated VaR even if the estimated rolling historical VaR is
progressively adjusted after the hits. Then, adding a buffer can make the VaR guess
more robust to market accidents.
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Figure 2: DJIA A and Range for a Set of Daily VaR99% Forecasts around the 2008
Lehman Brothers’s Event

(a) Negative Returns and One-year rolling VaR at 99%

(b) Exceptions and various Adjusted Estimated VaR

Source: Bloomberg; daily data of the S&P500 index in USD from the 1st January 2003 to the
1st January 2009; computations by the authors. The figure presents peak-over-VaR based on the
4-year rolling daily historical VaR 99% on the S&P 500 index, as well as corrected VaR estimates
with various ad hoc incremental buffers (numbered #1 to #3).
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Depending on the size of this buffer for model risks considered (from rather prudent
to highly cautious ones), the properties of hits are significantly different in terms of
frequency, dependence and size. But the question for the risk manager is how to ex
ante fix the size of this buffer (correction #1, #2 or #3 in Figure 2)? This paper
proposes a method to calibrate the buffer based on a backtesting framework. The
corrected-VaR is then equal to an imperfect estimated VaR minus the minimum VaR
adjustment - no more and no less - to be validated by backtests.

In this set-up, we show, for some assets and some realistic simulations, how fragile
VaR estimates are, not only with respect to the pure choice of the risk model, but
also regarding the choice of the underlying econometric model and of the appropriate
sampling period.

Our main contribution consists in proposing a simple framework to compute risk
measures robust to the main model risks based on an incremental buffer assessing
the main valuable properties of risk models.

The outline of the paper is as follows. The next section surveys the literature, fol-
lowed by a section on the model risks of VaR. Section 4 presents simple illustrations
of elementary model risks with realistic simulations. Section 5 proposes an economic
valuation of model risks. Section 6 concludes, the body of the paper, but the appen-
dix follows, outlining the main back testing methods used in the paper.

2 Model risk when forecasting risk

Our work relates to the recent work of Gagliardini et al. (2010), who propose Es-
timation and Granularity adjustments for VaR, and very similar to that of Lönnbark
(2010), who derives adjustments of interval forecasts to account for parameter esti-
mation. In the context of extreme risk measure, the objective of this paper is similar
to Kerkhov et al. (2010), who first propose a incremental market risk capital charge
calibrated on the backtesting framework of the regulators, as well as, Alexander
and Sarabia (2011) who deal explicitly with VaR model risk by quantifying VaR
model risk and proposing an adjustment to regulatory capital based on an maximum
entropy criterion.

A number of papers have considered estimation risk for risk models. This type of
model risk is probably the most frequently discussed in the literature (see for instance
Gibson et al., 1999; and Talay and Zheng, 2002). The issue of estimation risk for
VaR has been considered previously in the identically and independently distributed
return case by, for example, Jorion (1996) and Pritsker (1997). Estimation risk in
dynamic models has also been considered by several authors. Berkowitz and O’Brien
(2002) observe that the usual VaR estimates are too conservative (at the time of
publication). Figlewski (2004) examines the effect of estimation errors on the VaR
by simulation. The bias of the VaR estimator, resulting from parameter estimation
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and misspecified errors distribution, is studied for ARCH(1) models by Bao and
Ullah (2004). In the identical and independent setting, Inui and Kijima (2005)
show that the nonparametric VaR estimator (i.e. an empirical quantile) may have
a strong positive bias when the distribution features fat-tails. Christoffersen and
Gonçalves (2005) study the loss of accuracy in VaR and ES due to estimation error,
and constructed bootstrap predictive confidence intervals for risk measures. Hartz
et al. (2006) propose a re-sampling method based on bootstrap to correct the bias
in VaR forecasts for the Gaussian GARCH model. For GARCH models with heavy-
tailed errors distributions, Chan et al. (2007) derive the asymptotic distributions of
extremal quantiles. Escanciano and Olmo (2009, 2010-a and 2010-b) study the effects
of estimation risk on backtesting procedures. They show how to correct the critical
values in standard tests used, when assessing the quality of VaR models. Gouriéroux
and Zaköıan (2010) quantify in a GARCH context the effect of Estimation Risk on
measures for estimation of portfolio credit risk and show how to adjust risk measures
to account for estimation error.

Financial risk forecast models, just like any other statistical models, are thus subject
to model risk. In spite of this, almost all presentations of risk forecasts focus on
point estimate, omitting any mention of model risk, not to even mention estimation
risk. They are, however, subject to the same basic elements of model risk as any
other model, but are also subject to unique model risk factors because of the specific
application.

In order to formally identify the model risk factors, we propose a 5 level classification
scheme:

1. Parameter estimation error arises from uncertainty in the parameter values
of the chosen model;

2. Specification error refers to the model risk stemming from inappropriate
assumptions about the form of the data generating process (DGP) for the
random variable;

3. Granularity error is based onto the impact of undiversified idiosyncratic risk
on the portfolio VaR;

4. Measurement error relates to the use of erroneous data when measuring the
risks and testing the models;

5. Liquidity risk is defined as the consequence of both infrequent quotes avail-
ability and the inability to conduct sometimes a transaction at current market
prices because of the too large relative size of the transaction.

The ultimate objective is to forecast VaR, where we indicate the estimate by esti-
mated VaR (denoted EVaR). It is a function of the portfolio size and model parame-
ters θ0. In what follows, VaR is the α−quantile (with α > .50) of the profit and loss
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distribution so that the VaR is negative. We also indicate the theoretical (or true)
VaR by ThVaR(θ0, α). In the following sub-sections, we detail these specific model
risks that impact VaR forecasts.

2.1 Estimation risk

Estimation risk occurs in every estimation process. Relatively small changes in
the estimation procedure or in the number of data observations can change the mag-
nitude and even the sign of some important decision variables. Thus, estimation risk
is the risk associated with inaccurate estimation of parameters, due to the estimator
quality and/or limited sample of data (past and/or future), and/or noise in the data.

While one could investigate the effect of parameter variations on risk measures that
are computed in a particular parametric framework, our aim here is to explicitly
consider model risk as a separate risk factor. Our work is similar in spirit to the
work of West (1996), who discusses when and how to adjust critical values for tests
of predictive ability in order to take parameter estimation uncertainty into account

Consider the best case scenario where we know the DGP but only observe a finite
sample. In this case, the estimated VaR will be a biased estimates of the theoretical
VaR. We hereafter indicate the bias by the function bias(θ̂, θ0, α). In this best case
scenario, we know bias function and can therefore obtain the perfect estimation
adjusted VaR (PEAVaR) by:

PEAVaR(θ̂, θ0, α) = EVaR(θ̂, α) + bias(θ̂, θ0, α). (1)

As a general rule, the smaller α is, the better we forecast VaR and identify the
bias function. The reason is that for a given sample size, the number of quantiles
increases along with decreasing α so the effective sample size used in the forecasting
increases.As the probabilities become more extreme, so does the accuracy of the VaR
forecasts decrease, for example because fewer observations are used in the estimation,
and hence it is harder to model the shape of the tail than the shape of the interior
distribution. As a consequence, it might be tempting tempted to forecast VaR closer
to the center of the distribution, perhaps at α = 95%, and then use those estimation
results to get at the VaR or the bias for more extreme probability levels, like α = 99%
or α = 99.9%. This is often referred to as probability shifting.

Alternatively, we can also analyze the impact of such endeavors within our framework
in defining two probabilities, α∗ and α∗∗, such that:{

PEAVaR(θ̂, θ0, α) = EVaR(θ̂, α∗) = ThVaR(θ0, α
∗)

EVaR(θ̂, α∗∗) = PEAVaR(θ̂, θ0, α) = ThVaR(θ0, α),
(2)

or equivalently: {
α∗ = F−1

[
F̂−1(α)

]
α∗∗ = F̂−1 [F−1(α)] .

(3)
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If one were to use α∗ instead of α, the bias adjusted VaR would result, whilst α∗∗

does the opposite, mapping the probability corresponding to the biased VaR, to the
theoretical VaR.

It follows that if α∗ > α > α∗∗ the estimated VaR is biased towards zero whilst if
α∗ < α < α∗∗ it is biased towards minus infinity.

This leaves the question, if we can identify the probability shifts could one then
obtain more accurate VaR forecasts? In the best case scenario considered here, it
might be possible since we know the true DGP. However, even in this case, it might
not be feasible. Suppose the forecasted VaR is biased towards zero, where α = .99
and we get α∗∗ = .9999. If the sample size is smaller than 100,000 and we employee
the Historical Simulation method, there is just no empirical quantile to use.

Generally, the tendency of some the users, encouraged by the supervisors, to use
relatively extreme probabilities, such as 99.5% in the European Solvency II frame-
work may not be warranted on grounds of probabilities shift type arguments because
it likely would lead to bigger model risk that if the probability levels were more
moderate.

2.2 Specification risk

Specification error arises from using inappropriate assumptions about the form
of the DGP. We propose denoting the strong form of specification risk as the risk from
using a risk model which can not capture the true unknown DGP. The weak form of
specification risk then corresponds to the risk of using a risk model inadequate with
the assumed, and hence known, DGP.

Consider special case of knowing the true model parameters but not knowing the
model. In this case, we can define the perfect specification adjusted VaR (PSAVaR)
such as:

PSAVaR(θ0, θ1, α) = EVaR(θ1, α) + bias(θ0, θ1, α), (4)

where θ1 are known parameters such that we can link the misspecified model to the
true model, where some mapping θ0 = f(θ1).

We can also define the relationship in terms of the probability shifts (as in (2)) such
as: {

PSAVaR(θ0, θ1, α
∗) = EVaR(θ̂, α) = ThVaR(θ0, α

∗)
EVaR(θ1, α

∗∗) = PSAVaR(θ0, θ1, α) = ThVaR(θ0, α).
(5)

2.3 Granularity error

Granularity error is caused by bias resulting from finite number of assets port-
folios and then the resulting residual idiosyncratic risk, see e.g. Gordy, 2003, Wilde
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(2001). The granularity principle yields a decomposition of such risk measures that
highlights the different effects of systematic and non-systematic risks.

More precisely, any portfolio risk measure can be decomposed into the sum of an
asymptotic risk measure corresponding to an infinite portfolio size, and 1/n times
an adjustment term, here n is the portfolio size (number of assets). The asymptotic
portfolio risk measure, called the cross-sectional asymptotic risk measure, captures
the non-diversifiable effect of risks onto the portfolio. The adjustment term, called
granularity adjustment, summarizes the effect of the individual specific risks and
their cross-effect with systematic risks, when the portfolio size is large, but finite.

Suppose the theoretical VaR is based on an asymptotic factorial model, valid as-
ymptotically. In this case, we can apply a similar adjustment factor to arrive at the
perfect granularity adjusted VaR (PGAVaR):

PGAVaR(θ0, α, n) = EVaR(θ0, α, N) + bias(θ0, α, n), (6)

where n is the number of assets in the portfolio under studies and N a large number
of assets for which the asymptotic model is valid.

We can also define the relationship in terms of the probability shifts (as in (2)) such
as: {

PGAVaR(θ0, α, n) = EVaR(θ̂, α) = ThVaR(θ0, α
∗)

EVaR(θ1, α
∗∗) = PGAVaR(θ0, α, n) = ThVaR(θ0, α).

(7)

2.4 Measurement error

Financial data are prone to measurement errors caused by various phenom-
enon such as non-synchronous trading, rounding errors, infrequent trading, micro-
structure noise or insignificant volume exchanges. In addition, observed data is sub-
ject to manipulation (smoothing, extra revenues, fraudulent exchange, information
less trading, etc.

Measurement error risk can strongly distort backtesting results and significantly af-
fects the performance of standard statistical tests used to backtest VaR models.
Frésard et al. (2010) extensively document the phenomenon and report that a large
fraction of banks artificially boost the performance of their models by polluting their
“true”profit and loss with extra revenues that causes under-estimation of the true
risk. Certain financial institutions report a contaminated P&L with extraneous prof-
its such as intraday revenues, fees, commissions, net interest incomes and revenues
from market making or underwriting activities.
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2.5 Liquidity risk

While liquidity has many meanings, from the point of view of the risk forecasting,
the most relevant is some aspects of market liquidity, as defined by the BCBS, such
as the ability to quickly trade large quantities, at a low cost, and without impacting
the price. these directly follow from Kyle’s (1985) three dimensions of liquidity:
tightness, depth, and resiliency.

For portfolios of illiquid securities, reported returns will tend to be smoother than
true economic returns, which will understate volatility and increase risk-adjusted
performance measures such as the Sharpe ratio.

Getmansky et al. (2004) propose for instance an econometric model of illiquidity
exposure and develop estimators for the smoothing profile as well as a smoothing-
adjusted Sharpe ratio (that basically conduct to intensify the measured smoothed
volatility by a factor to recover a proxy of the true underlying volatility). Measures
for gauging illiquidity exposure of several asset classes are presented in Chan et
al. (2006). Liquidity aspects enter the Value-at-Risk methodology quite naturally.
The VaR approach is built on the hypothesis that “market prices represent achievable
transaction prices” (Jorion, 2007). In other words, the prices used to compute market
returns in the VaR models have to be representative of market conditions and traded
volume. Consequently, the price impact of portfolio liquidation has to be taken into
account.

Chordia et al. (2001) find a significant cross-sectional relation between stock returns
and the variability of liquidity, where liquidity is approximated by measures of trading
activity such as volume and turnover. The authors report that stocks with more
volatile liquidity have lower expected returns, an unexpected result. Liquidity risk
in that study is measured as firm-specific variability in liquidity. The VaR liquidity
risk component originates from the volume dependent price impact incurred when
the portfolio is liquidated. Giot and Grammig (2005) use weighted spread in intraday
VaR-framework to take into consideration the liquidity risk. They show that when
adopting a trader perspective, accounting for liquidity risk becomes a crucial factor
the traditional (frictionless) measures severely underestimate the true VaR. When
the VaR time horizon is increased assuming the regulators perspective defined in the
Basel Accord, liquidity risk is reduced compared to market risk, but remaining an
economically significant factor as far as medium and large portfolios are concerned.
As an extreme example, we can mention that NY stock exchange remained shuttered
for more than four months at the beginning of the First World War (from the 31st of
July 1914 to the 12th of December 1914) and that the re-opening brings the largest
one-day percentage drop in the DJIA A (24.4%).3

3See e.g., Silber (2005).
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3 Analysis of estimation and specification errors

Many of the potential sources of error discussed above can have a significant
impact on the accuracy of risk forecasts. The sources one is most likely to encounter
in day to day risk forecasting, and certainly in most academic studies, is estimation
and specification error. For this reason, we first investigate those two in detail why
means of a Monte Carlo experiment, whereby we specify a general model (the DGP),
and used this model to generate data. Secondly, we then treat the DGP as unknown
and forecast VaR for the simulated data,

As before, the true parameters are θ0, but we now also have the true parameters of
the misspecified model, indicated by θ1, as well as its estimate θ̂1. In this case, we
can extend (1) and (4) and indicate the estimated VaR by EVaR(θ̂1, α) and define
the perfect model risk adjusted VaR (denoted herein PMAVaR) by:

PMAVaR(θ̂1, α) = ThVaR(θ0, α) − bias(θ0, θ̂1, α) (8)

3.1 The true model

The GDP needs to be sufficiently general to capture the salient features of finan-
cial return data. Because we are not limited by the need to estimate a model, we can
specify a DGP that might be difficult, to the point of impossible, to estimate back
in small samples. The GDP is a second order Markov-Switching Generalized Au-
toRegressive Conditionally Heteroskedastic with t-student disturbances4 (hereafter
denoted MS(2)-GARCH(1,1)-t).5

We first simulate a long artificial series of 360,000 daily returns with estimated pa-
rameters on the daily DJIA from 01/01/1990 to 09/20/20116. We then forecast
various VaRs using 1,000 observations, and finally, computing statistical indications
of the forecast error, measured by the difference between the asymptotic VaR (com-
puted with the true simulated DGP on 360,000 observations) and the empirical ones
recovered from limited samples.

4As a complement (not reported here for space reasons, but available on demand in a web
appendix), we also used in preliminary tests other alternatives frameworks: a Student versus a
Normal density, as well as a Brownian, Lévy and Hawkes processes, with the same qualitative
response with a relative model error for VaR ranging form 5-15% in the simplest cases (Gaussian
estimation risk with 250 observations) to as large as 200% when the process in complicated and the
sample small (case of Hawkes processes).

5see Frésard et al. (2011) in a VaR context, we hereafter use a MS(2)-GARCH(1,1)-t (see
Hamilton and Susmel, 1994; Gray, 1996; Klaassen, 2002; Haas et al., 2004) for more details on the
process.

6The estimated parameters of the MS(2)-GARCH(1,1) model on the DJI Index are ω1 =
3.1699e−006, β1 = 0.90801, α1 = 0.0733081, ω2 = 2.509e−005, β2 = 0.10453, α2 = 0.0064734,
µ1 = 0.00, µ2 = 0.00, υ = 5.56, p11 = 0.99654 and p22 = 0.99328. Bauwens et al. (2007) and Billio
et al. (2010) obtain approximately the same results on the S&P.
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The DGP is:
rt = µst + σtzt, (9)

with: zt � iidSt(0, 1, υ) and σ2
t = ωst +αstε

2
t−1 +β2

st
σ2

t−1, where st ∈ {1, 2} character-
izes the state of the market, µst is the mean return and the unscaled return innovation
return factor following a centered standard Student with υ degrees of freedom, and
where ωst > 0, αst ≥ 0, βst ≥ 0 are the parameters of the GARCH(1,1) in the two
states, and εt = rt − µst the return innovations with fat tails of a Student with a υ
degree of freedom.

The state is modelled with a Markov chain whose matrix of transition probabilities
is defined by pij = Pr(st = j|st−1 = i). Appropriately chosen restrictions on the
GARCH coefficients ensure that σ2

t is almost surely strictly positive.

3.2 Simulation results

We will compute in what follows, the annualized daily 95%, 99% and 99.5%
VaR, assuming a particular DGP for the returns

Table 1 illustrates the model risk of VaR estimates, defined as the implication of
model misspecification and a parameter estimation uncertainty. We examine this
model risk by comparing a normal GARCH(1,1) and a MS(2)-GARCH(1,1)-t simu-
lations and estimates. The columns represent respectively the average adjusted VaR
according to specification and/or estimation errors, the theoretical VaR, the average
of the adjustment term, the minimum value of the adjustment term, the maximum
value of the adjustment term. Note that a positive adjustment term indicates that
the estimated VaR (negative return) should be more conservative (more negative).

We present the estimation bias (denoted bias(θ0, θ̂, α) as previously introduced in
equation (1)), in Panel A of Table 1, when we simulate a simple model (Normal
GARCH(1,1)) and use the appropriate methodology for computing the VaR (Nor-
mal GARCH-VaR). This bias arises only due to the limited number of observations
(1000), and is zero for the 360,000 simulations. But the dispersion of this estimation
bias is quite important since the minimum and the maximum values of the bias (or
adjustment term) represent about 50% of the “true” or “perfect” VaR. For example,
with α = 99%, the minimum and maximum biases are respectively equal to -33%
and +32% for a perfect VaR of -60%.
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Table 1: Illustrations of Conditional Simulated Errors associated to the 95%, 99%
and 99.5% VaR: GARCH(1,1) versus MS(2)-GARCH(1,1)-t

Panel A. GARCH(1,1) DGP and GARCH(1,1) VaR
with Estimation Error

Mean Perfect Mean Median Min. Max.
Probability Estimated VaR VaR Bias Bias Bias Bias
α = 95.00% -36.16% -36.16% .00% .02% -19.53% 19.60%
α = 99.00% -59.70% -59.70% .00% .04% -32.66% 32.02%
α = 99.50% -70.99% -70.99% .00% .06% -38.35% 38.03%

Panel B. MS(2)-GARCH(1,1)-t DGP and GARCH(1,1) VaR
with Specification Error

Mean Perfect Mean Median Min. Max.
Probability Estimated VaR VaR Bias Bias Bias Bias
α = 95.00% -30.78% -36.16% 5.38% 5.38% 5.38% 5.38%
α = 99.00% -43.83% -59.70% 15.87% 15.87% 15.87% 15.87%
α = 99.50% -48.61% -70.99% 22.38% 22.38% 22.38% 22.38%

Panel C. MS(2)-GARCH(1,1)-t DGP and GARCH(1,1) VaR
with Specification and Estimation Errors

Mean Perfect Mean Median Min. Max.
Probability Estimated VaR VaR Bias Bias Bias Bias
α = 95.00% -28.97% -36.16% 7.19% 8.83% -18.99% 21.70%
α = 99.00% -41.28% -59.70% 18.42% 20.76% -18.02% 38.88%
α = 99.50% -45.78% -70.99% 25.20% 27.79% -15.03% 47.84%

Source: Bloomberg; daily data of the DJIA A index in USD from the 1st January 1900 to the 20th

September 2011; computations by the authors. This statistics were computed with the results on
360,000 simulated series of 1000 daily returns according to a specific DGP (rescaled GARCH(1,1)
for Panel A and MS(2)-GARCH(1,1)-t for Panels B and C) using an annualized Normal GARCH
VaR (in all Panels). The columns represent respectively the average adjusted VaR according to
specification and/or estimation errors, the theoretical VaR, the average of the adjustment term, the
minimum value of the adjustment term, the maximum value of the adjustment term. A positive
adjustment term indicates that the estimated VaR (negative return) should be more conservative
(more negative). Panel presents GARCH(1,1) DGP with estimated GARCH-VaR; Panel B presents
true MS(2)-GARCH(1,1) DGP with estimated GARCH-VaR; Panel C presents estimated MS(2)-
GARCH(1,1) DGP with estimated GARCH-VaR.
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The specification bias (denoted bias(θ0, θ1, α)) is presented in Panel B of Table 1,
where the quantiles were modelled by a GARCH(1,1) VaR. Within this specific illus-
tration, the risk model is fully explained by the discrepancy between the DGP and
the assumed simple risk model used (since the parameters are here known and the
estimation bias is zero by definition), the specification bias is thus constant and de-
pends upon the choice of the risk model specification. The average specification bias
is important here, positive and increases with α, which indicates that extreme risks
of the MS(2)-GARCH(1,1)-t DGP are generally underestimated by the GARCH(1,1)
parametric VaR model.

The estimation and specification biases are captured simultaneously in In Panel
C. These components of model risk are jointly considered and in the worst cases
they add up in an independent manner. We compute the global error - denoted,
in its most general formulation, bias(θ0, θ1, θ̂1, α) - as the difference between the
“true” theoretical VaR and the estimated VaR according to a misspecified VaR model
estimated on a limited sample. As in Panel B, where a normal GARCH(1,1) is used
to estimate a MS(2)-GARCH(1,1)-t, the average bias is positive and increases with
α. The mean errors are thus equivalent to the specification bias component, but the
dispersion of the “model risk”realizations is increased by the estimation bias.

Regarding now the probability shifts, the impact of model risk is captured in Table
2, which presents the two modified probability levels α∗ and α∗∗. The former is
associated to the “true” density and corresponds to the (mis-)estimated α-VaR,
whilst the latter, associated to the estimated VaR, corresponds to the α-VaR without
model error.

The gap between α∗ and α can be interpreted as a measure of the model risk of the
risk model, which should be founded in a context of parameter uncertainty. The gap
between α∗∗ and α can also be analyzed as the probability shift that we should apply
using a specific model of VaR to reach the “true” theoretical VaR.

This alternative representation of the model risk of risk models shows that α∗∗ is often
unreachable to allow us to correct the estimated VaR. For instance, the maximum
associated to the 99.5% VaR in Panel C has to be superior to 100% which can
not be in practice discriminated from the maximum (i.e. associated to the 100%
probability). More generally, α∗∗ is very often superior to α, (and α∗ generally
inferior to α) which can be interpreted as an under-estimation of the risk using the
proposed model of VaR (the estimated VaR is too aggressive).
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Table 2: Illustrations of Probability Shifts associated to the 95%, 99% and 99.5%
Annualized VaR: GARCH(1,1) versus MS(2)-GARCH(1,1) Quantiles

Probability α∗ associated Probability α∗∗ associated
to the true density corresponding to the biased empirical density

to the (mis-)estimated VaR corresponding to the perfect VaR
Panel A. GARCH(1,1) DGP and GARCH(1,1) VaR

with Estimation Error
Estimated Mean Median Min Max Mean Median Min Max

VaR Shift Shift Shift Shift Shift Shift Shift Shift
α = 95.00% 94.19% 94.24% 90.37% 99.31% 94.51% 94.26% 94.36% 99.88%
α = 99.00% 98.92% 98.95% 96.83% 99.92% 99.05% 99.08% 98.49% 99.99%
α = 99.50% 99.25% 99.38% 98.71% 99.97% 99.47% 99.09% 99.98% N.R.

Panel B. MS(2)-GARCH(1,1)-t DGP and GARCH(1,1) VaR
with Specification Error

Estimated Mean Median Min Max Mean Median Min Max
VaR Shift Shift Shift Shift Shift Shift Shift Shift

α = 95.00% 95.81% 95.81% 95.81% 95.81% 97.29% 97.29% 97.29% 97.29%
α = 99.00% 98.64% 98.64% 98.64% 98.64% 99.92% 99.92% 99.92% 99.92%
α = 99.50% 99.07% 99.07% 99.07% 99.07% 99.99% 99.99% 99.99% 99.99%

Panel C. MS(2)-GARCH(1,1)-t DGP and GARCH(1,1) VaR
with Specification and Estimation Errors

Estimated Mean Median Min Max Mean Median Min Max
VaR Shift Shift Shift Shift Shift Shift Shift Shift

α = 95.00% 94.15% 94.29% 82.43% 99.44% 97.44% 98.47% 85.69% N.R.
α = 99.00% 97.71% 97.94% 89.81% 99.88% 99.78% 99.98% 96.27% N.R.
α = 99.50% 98.35% 98.56% 91.71% 99.92% 99.93% N.R. 98.32% N.R.

Source: Bloomberg; daily data of the DJIA A index in USD from the 1st January 1900 to the
20th September 2011; computations by the authors. This statistics were computed with the re-
sults on 360,000 simulated series of 1000 daily returns according to a specific DGP (rescaled
GARCH(1,1) for Panel A and MS(2)-GARCH(1,1)-t for Panels B and C) using an annualized
parametric VaR. The columns represent respectively the average Estimated VaR according with
specification or/and estimation errors, the mean-minimum-maximum of the modified probability
level α∗, the mean-minimum-maximum of the modified probability level α∗∗. The letters N.R.
stands for “Not Reached”, i.e. condition on bounds is not met even for 100.00%. Panel presents
GARCH(1,1) DGP with estimated GARCH-VaR; Panel B presents true MS(2)-GARCH(1,1) DGP
with estimated GARCH-VaR; Panel C presents estimated MS(2)-GARCH(1,1) DGP with estimated
GARCH-VaR.
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This suggests that the recent tendency of regulators to recommend more extreme
quantiles, i.e. VaR 99.5% or 99.9%, is not warranted since in some cases the real
VaR appears below the worst estimated return.

Finally, our results show, surprising to us, that the mean bias is not an increasing
function of the VaR and, accordingly, of the level of probability associated to the
VaR. The expected adjustment associated to the 99.5% (99%) probability level is
for instance four (two) times larger than the expected adjustment associated to the
95% probability level and represents an increase of nearly 15% (10%). The relation
between the “model risk” and the probability associated to the VaR is however not
linear and depends on several components.

The implemented estimated VaR should be corrected by an adjustment correspond-
ing to the global bias linked to the potential model risk error. However, the true
perfect VaR is unknown by definition. The proposed adjustments are thus impossi-
ble to be accurately quantified outside a pure academic simulation exercise. But we
might have an idea of the minimum needed adjustment for meeting the regulation
requirements. In other words, errors on pricing or return modelling and biases in the
empirical estimation lead to a model error on the VaR that we can try to approx-
imate thanks to its empirical economic consequences as proposed in the following
section.

4 A simple economic valuation of model risks

While it is not possible to optimally adjust for biases such as those caused by
estimation and specification, we can approximate these biases by adjusting the VaR
forecasts by the performance of the same model historically. In other words, historical
errors are used to adjust future forecasts.

To this end, we define the imperfect model adjusted VaR (IMAVaR) as:

IMAVaR(θ̂1, α, n) = EVaR(θ̂1, α, N) + adj(θ0, θ1, θ̂1, α, n), (10)

where EVaR(·) is an estimated VaR with a specific risk model, θ̂1 are model parame-
ters estimated with T observations and n assets, and adj(θ0, θ1, θ̂1, α, n) the minimum
VaR adjustment for the risk model to be validated by the supervisors, such that:

IMAVaR(θ̂1, α, n) = sup︸︷︷︸
VaR∈ IR

{VaR(α, n)∗} , (11)

where VaR(·)∗ is a set of VaRs, from a model approved by the supervisor, and
IMAVaR(·) is the limit highest VaR (the less conservative VaR) such that the super-
visor still validates the model.

Generally speaking, the better the VaR model and the lower the minimum required
adjustment and vice-versa. We now have to explicit the limit VaR that bounds the
IMAVaR.
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4.1 General backtest procedures

A variety of tests have been proposed in the literature to gauge the accuracy
of VaR estimates, based on the three good properties that we should expect from
a risk model such as the right frequency of violations, the independence of hits and
the restricted magnitude of exceptions. We will use some of the best knowns for the
adjustments without loss of generality. We briefly mentioned them in this section,
and provide details in Appendices A.

The first VaR test is for a good VaR is the unconditional coverage test (Kupiec,
1995), based on observed number of violations of VaR, compared to that expected.
If we assume that the IEVaR

t (·) variables are independently and identically distributed,
then, under the unconditional coverage hypothesis (Kupiec, 1995), the total number
of VaR exceptions follows a Binomial distribution (Christoffersen, 1998), denoted
B(T, α), such as:

Hit
EVaR(·)
t (α) =

T∑
t=1

I
EVaR(·)
t (α) ∼> B(T, α). (12)

The second test for a good VaR for the independence of forecasting errors, in par-
ticular the Christoffersen (1998) test:

LRindIEVaR
t (α) = 2

[
log LIEVaR

t (α)(π01, π11) − log LIEVaR
t (α)(π, π)

]
∼> χ2(1). (13)

A third class of tests focuses on the magnitude of the losses experienced when VaR
estimates are exceeded. The underlying idea is that a small violation might accept-
able but that a large one can lead to bankruptcy. Berkowitz (2001) for instance
proposes a hypothesis test for determining whether the magnitudes of observed VaR
exceptions are consistent with the underlying VaR model, such as:

LRmagγt+1 = 2
[
Lγt+1

mag (µ, σ) − Lγt+1
mag (0, 1)

] ∼> χ2(2). (14)

For both unconditional and conditional coverage tests Escanciano and Olmo (2009,
2010-a and 2010-b) alternatively approximate the critical values of these tests by
using a sub-sampling bootstrap methodology, since they show that the coverage
VaR backtest is affected by model misspecification.

A perfect sequence of (corrected) empirical VaR in the sense of this test (i.e. not too
conservative, but not too over-confident), is thus such that it respects all previous
test conditions.

4.2 A good VaR and the backtests

For a given VaR forecast and the bounding range for the tests above, we can
obtain the IMAVaR that respects conditions (12), (13) and/or (14) (or their sub-
sampled versions) such as (with previous notations):
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adj(θ̂1, θ1, θ0, n) = q∗ = max︸︷︷︸
q∗∈ IR

{VaR(α, n)∗t}

s.t.:
Hit

VaR(·)∗
t (α) ∼> B(T, α) for the “Hit” test

(and/or)

LRind
VaR(·)∗
t (α) ∼> χ2(1) for the “Independence” test

(and/or)
LRmag

γt+1

t (α) ∼> χ2(2) for the “Exception Magnitude” test,

(15)

with: VaR(α, n)∗t = EVaR(θ̂1, α, N)t + q∗.

As a first illustration, Figure 3 represent the minimum adjustments (errors), denoted
q∗ as solutions of the program (15), when first only considering the hit test, for both
one-year historical and Gaussian VaR computed on the DJIA on one century of daily
data.

Figure 3: Minimum Model Risk Adjustment for the Hit Test associated to Historical
and Gaussian VaR on the DJIA A according to the Level of Confidence

Source: Bloomberg; daily data of the DJIA A index in USD from the 1st January 1900 to the
20th September 2011; computations by the authors. This figure represents on the y-axis the
minimal adjustment (in percent of the underlying VaR) necessary to respect the hit ratio criterion
according the VaR level of confidence (x-axis). This minimal adjustment is here considered as
a proxy of the economic value of the model risk; it is expressed as a proportion of the observed
average VaR. The historical VaR is here computed on a weekly horizon as an empirical quantile
using 5 years of past returns. The Gaussian VaR is here computed on a weekly horizon as a
parametric Gaussian quantile using 5 years of past returns to estimate the parameters.

18



In other words, we show the minimal constant that should be added to the quantile
estimation for reaching a VaR sequence that passes the hit test at all time (with full
information at time T ). We can see here that the comparison of the two methods
is in favour of the historical method since the error is lower (around 4%) for all
quantiles and thus rather independent of the confidence level.

4.3 VaR model comparisons

We apply the general adjustment method presented above, obtained for the
daily DJIA A index from the 1st of January 1900 until the 2nd of March 2011, or
29,002 daily returns. We use a moving window of four years (1,040 daily returns)
to re-estimate dynamically parameters for the various methods. Forecasted VaR
are computed for each method for the final 29,957 days (about 108 years). This
comparison considers daily estimation of the 95%, 99% and 99.5% conditional VaR.

This leaves the choice of VaR forecast method. While there is an almost infinite
number of techniques that could be used, we restrict ourselves to the most common
in practice. Historical simulation, parametric approaches, based on Gaussian or
t-Student return distributions, with a compromise with the modified VaR using a
statistical expansion (Cornish-Fisher VaR). We also employ three dynamic methods,
namely EWMA, GARCH(1,1) and CAViaR (Engle and Manganelli, 2004). Finally,
we complement the these methods by using two extreme densities for the returns
such as the GEV distribution and the GPD.

Figure 4 represents the dynamic required corrections corresponding to the Hit test
for the various risk models on the DJIA. These corrections are the daily correction to
pass the hit test over the past one-year of daily returns (on the period from t − 250
to t). The magnitude can be sometimes large (specifically around the 1929 and
2008 crises), ranging from 0 to 15% (for EWMA) or to more than 100% in some
circumstances (for the Cornish-Fisher VaR). We also see that the most extreme VaR
violations happened during the great depression for all measures. In other words,
except for the CAViaR method, the final adjustment is obtained just after 1934 (and
does not vary after). Dynamic measures, such as EWMA, GARCH and CAViaR,
also demonstrate some superiority over unconditional parametric methodologies.
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Figure 4: Dynamic Optimal Adjustment on the Daily VaR 95% related to the Hit
Test for different VaR models

Source: Bloomberg; daily data of the DJIA A index in USD from 1st January 1900 to the 20th of
September 2011; computations by the authors. We use a moving window of four years (1,040 daily
returns) to dynamically re-estimate parameters for the various methods.

Figure 5 illustrates the evolution of the maximum required corrections for all VaR
methods under consideration (maxima of correction needed from 0 to t represented by
Figure 4). This is for the Hit test, from the general program aiming to correct today’s
VaR with the maximum correction that has been necessary since the beginning of
the series (expressed here in relative terms compared to the level of VaR).

The magnitude of the correction is at the end large in general, ranging from 15%
(RiskMetrics) to more than 100% (for the Cornish-Fisher VaR). We also see that,
except for the CAViaR method, the final adjustment is obtained just after 1934 and
do not vary a lot after. Corrections for dynamic measures once again quite rapidly
reach their required maximum and are thus quite stable overall.
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Figure 5: Optimal Dynamic Absolute Value of Minimum Negative Adjustments for
the Hit Test for different VaR Measures at 95%

Source: Bloomberg; daily data of the DJIA A index in USD from 1st January 1900 to the 20th of
September 2011; computations by the authors. We use a moving window of four years (1,040 daily
returns) to dynamically re-estimate parameters for the various methods.

Figure 6 illustrates the minimum dynamic adjustment required for passing the hit
test for a randomly chosen the first date of implementation. More precisely the
exercise consists in choosing a first date and then computing the dynamic adjustment
until the end of the sample and redoing the exercise 30 000 time whilst keeping, for
each horizon, the minimum correction obtained. The optimal adjustments are here
expressed in terms of percentage of their maximum value over the whole sample. The
figure shows that depending on the VaR method, the horizon for having the major
part of the maximum correction varies from 18 years (GEV) to 46 years (CAVIAR).
Moreover, regardless of the model, the major part (80% or so) of the correction is
reached after 10 years. That means that, whatever the VaR model, the most of
the highest surprises have been faced after a decade of history (even in the worst
scenario when the sample is amongst the less turbulent ones). In other words, at
least ten years are needed to have a fairly good idea of the magnitude of the required
correction.
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Figure 6: Optimal Dynamic Relative Adjustment for the Hit Test for different Start-
ing Dates and VaR Measures at 95% by Horizon (in years)
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Source: Bloomberg; daily data of the DJIA A index in USD from 1st January 1900 to the 20th of
September 2011; computations by the authors. We use a moving window of four years (1,040 daily
returns) to dynamically re-estimate parameters for the various methods. This figure illustrates the
dynamic negative adjustment required for passing the Hit test (see Figure 4) having randomly
chosen the first date of implementation. Optimal relative negative adjustments are here expressed
in terms of percentage of their maximum value over the whole sample.

We next consider the three main qualities of VaR models (and not only the hit test) as
a generalization of the approach by Kerkhof et al. (2010) taking into account several
qualities of VaR models. Table 3 reports the various maximum required corrections
related to the three main categories tests (altogether with their Escanciano and
Olmo, 2010, bootstrapped corrected versions). We first note that the hit test is less
permissive when the corrections implied by the bootstrapped critical values are made,
whilst the tests of independence and normality imposed very severe corrections (of
order of 100% in relative terms for some tests).

The exception frequency test, i.e. the unconditional coverage test by Kupiec 1995 at
a 5% level): the EWMA is the best model for estimating the DJIA Index 95% VaR.
Following the same argument, GARCH VaR, then GEV VaR model come just after.
When the dynamics of hit are considered, the conditional methods perform better for
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the second correction (with the best result for the GARCH model). Finally, when we
are interested in the magnitude of the violations - the most severe test - once again
the dynamic measures show some superiority, whilst extreme density VaR exhibit
some weaknesses.

Table 3: Maximum Negative Adjustment Values for 95% Daily Value-at-Risk Models

VaR Methods Mean VaR q1 q∗1 q2 q∗2 q3 q∗3
Historical -1.60% -2.61% -2.03% -4.85% -3.24% -3.10% -5.90%
Normal -1.68% -2.66% -1.86% -4.62% -2.76% -2.76% -5.49%
Student -1.89% -2.49% -1.86% -4.25% -2.85% -3.11% -6.30%
Cornish-Fisher -1.26% -8.29% -7.48% -8.40% -8.86% -8.40% -8.86%
RiskMetrics -1.59% -.98% -.65% -2.03% -1.02% -1.02% -2.89%
GARCH -1.61% -1.13% -.96% -2.57% -1.15% -1.20% -2.46%
CAViaR -1.66% -1.87% -1.55% -2.59% -2.22% -2.08% -2.56%
GEV -1.84% -2.42% -1.99% -4.47% -2.99% -2.80% -6.97%
GPD -2.11% -2.35% -1.67% -4.43% -2.63% -2.71% -6.51%

Source: Bloomberg; daily data of the DJIA A index in USD from the 01/01/1900 to the 09/20/2011;
computations by the authors. We use a moving window of four years (1,040 daily returns) to
dynamically re-estimate parameters for the various methods. The variable q1 refers to Hit test;
q∗1 to Escanciano and Olmo (2010) unconditional test; q2 to independence test; q∗2 to Escanciano
and Olmo (2010) independence test, q3 to the magnitude test and q∗3 lies to the Bootstrap sampled
magnitude test.

4.4 Generalized model risk of model risk

These results have particular implications on how one might approach adjust-
ments. First, the link between the three implicit levels of confidence required to be
defined; the confidence level of the VaR under consideration; the thresholds in the
various tests applied for computing the required correction, and, finally, the degree
of confidence we want to affect to the solidity of the buffer.

Typically, a high incremental buffer leads a high protection against the model risk
and the extreme events on the market. But a reduced buffer decreases the insurance
against these major turbulent episodes and then the failures of risk models.

Figures 7 and 8 below illustrate this link between the level of the buffer, translated
the protection against the more severe crises and the degree of confidence associated
to the buffer. These Figures represent the cumulative density functions of required
adjustments (on the last century on the DJIA) for respectively the historical and
GARCH(1,1) VaR at a 95% confidence level, with a threshold for the Hit test fixed
at 95%. We can see that if we allow a 5% model risk, we are, unsurprisingly, not
protected against the 5% biggest shocks on the data (such as 1929, 1930, 2008 and
2009).
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Figure 7: Empirical Cumulative Density Function of Optimal Adjustment Values for
the Hit Test of a 95% Daily Historical Value-at-Risk

Source: Bloomberg; daily data of the DJIA A index in USD from the 1st January 1900 to the 20th

September 2011; computations by the authors. We use a moving window of four years (1,040 daily
returns) for computing the VaR. The threshold for the Hit test us fixed at 95%. We have used a
Gaussian Kernel Smoothing Density (see Bowman and Azzalini, 1997).

Figure 8: Empirical Cumulative Density Function of Optimal Adjustment Values for
the Hit Test of a 95% Daily Historical Value-at-Risk

Source: Bloomberg; daily data of the DJIA A index in USD from the 1st January 1900 to the 20th

September 2011; computations by the authors. We use a moving window of four years (1,040 daily
returns) to dynamically re-estimate parameters for computing the GARCH-VaR. The threshold
for the Hit test us fixed at 95%. We have used a Gaussian Kernel Smoothing Density (see Bowman
and Azzalini, 1997).
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The second generalization concerns the recommended stress VaR on various profiles
of investment portfolios. We can express the confidence level related to model risk
using a stress-VaR methodology (i.e. imposing VaR levels for each investment class
and a variance-covariance matrix on the underlying assets), as well as the implicit
100% model risk free k ratio - that is to be applied to the VaR for computing the
capital requirement for financial institutions. In other words, one can evaluate the
accuracy of the k factor used by regulator for fixing a safe capital (k being between
3 and 5, applied to the VaR for calculating the capital requirement) when compared
to the worst forecast realizations (measured by the ratio of the largest adjustment
out of the VaR forecast on a specific day), when following the recommended VaR
methodology based on defined stresses on sub-components of various portfolios.

Table 4: Minimum Annualized Model Risk for a GARCH-VaR for all 5% Validity
Tests for a 95% Stress-test VaR on various Portfolios

Portfolio q1 q∗1 q2 q∗2 q3 q∗3
Equity -10.15% -7.14% -9.86% -15.12% -44.80% -16.44%
Real estate -12.65% -10.32% -16.53% -18.93% -63.83% -25.03%
Commodity -6.39% -6.25% -5.29% -6.99% -13.76% -3.65%
Bonds -9.89% -9.62% -10.27% -10.54% -18.44% -13.62%
Liquidity .68% .68% .74% .68% .87% .00%
Defensive Profile -.08% -.08% .00% -.21% -1.04% -.26%
Balanced Profile -4.63% -4.36% -5.88% -6.52% -15.79% -8.74%
Aggressive Profile -9.28% -8.38% -8.52% -11.62% -35.05% -12.72%

Source: DataStream and Bloomberg; daily data from the 31th December 1986 to the 28th November
2011; computations by the authors. We use a moving window of four years (1,040 daily returns)
to dynamically re-estimate parameters for the various methods. “Defensive Profile” refers to 10%
Bonds+90% Liquidity; “Balanced Profile” refers to 30% Equity+10% Real Estate +10% Commod-
ity + 40% Bonds + 10% Liquidity; and “Aggressive Profile” refers to 70% Equity + 15% Real
Estate + 15% Commodity. The variable q1 refers to Hit test; q∗1 to Escanciano and Olmo (2010)
unconditional test; q2 to independence test; q∗2 to Escanciano and Olmo (2010) independence test,
q3 to the magnitude test and q∗3 lies to the Bootstrap sampled magnitude test.
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Table 5: Maximum k ratio Model Risk Confidence Levels for a GARCH-VaR for all
5% Validity Tests for a 95% Stress-test VaR on various Portfolios

Portfolio q1 q∗1 q2 q∗2 q3 q∗3
Equity .45 .32 .58 .68 2.56 .91
Real estate .38 .31 .79 .58 2.69 1.07
Commodity .68 .66 .59 .74 1.69 .45
Bonds 119.26 116.67 119.88 134.53 236.23 155.64
Liquidity -.37 -.37 -.65 -.37 -.6 .00
Defensive Profile .12 .12 .00 .33 1.75 .42
Balanced Profile .54 .51 .8 .76 2.17 1.19
Aggressive Profile .54 .43 .63 .59 2.69 .98

Source: DataStream and Bloomberg; daily data from the 31th December 1986 to the 28th November
2011; computations by the authors. We use a moving window of four years (1,040 daily returns)
to dynamically re-estimate parameters for the various methods. “Defensive Profile” refers to 10%
Bonds+90% Liquidity; “Balanced Profile” refers to 30% Equity+10% Real Estate +10% Commod-
ity + 40% Bonds + 10% Liquidity; and “Aggressive Profile” refers to 70% Equity + 15% Real
Estate + 15% Commodity. The variable q1 refers to Hit test; q∗1 to Escanciano and Olmo (2010)
unconditional test; q2 to independence test; q∗2 to Escanciano and Olmo (2010) independence test,
q3 to the magnitude test and q∗3 lies to the Bootstrap sampled magnitude test.

5 Conclusion

We propose incorporating model risk into risk measure calculations by con-
structing classes of models on the basis of standard econometric procedures. We
distinguish between several stages of modelling which each contributes to the model
risk that leads to different adjustments of a chosen risk measure. In this way, we
define several components of model risk which we refer to as estimation risk, spec-
ification risk, granularity, data contamination and liquidity risk. We then evaluate
their effect by their indirect impact on the properties of a good VaR model.

Our main objective is to account for some dimensions of the riskiness of risk models
and adjust consequently computed risk measures. We show, for some assets and
some realistic simulations, how fragile VaR estimates are, not only with respect to
the pure choice of the risk model, but also regarding the choice of the underlying
econometric model and of the appropriate sampling period.

Thus, our main objective is to show the extent to which (quantile) risk measures are
affected by model risk and to propose a practical method to account for this risk of
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risk measures, explicitly recognizing that identifying and measuring model risk lead
to better measurement methods. This adjustment, depending on the efficiency of
the risk model, allows the risk manager to jointly treat theoretical and estimation
risks, taking into account their possible dependence, and can be seen as a measure
of the risk model of a model risk called in Basel III regulation.

We, finally, use our framework for a simple comparison of main parametric, semi-
parametric and non-parametric VaR models following the simple principle that the
lower the required adjustment, the lower the model risk and therefore the better the
model. We also complement our approach in identifying the model risk of model risk
of risk model, by associating a degree of confidence on the correction based on the
distribution of past violations. Three levels of confidence are here needed: the level
of VaR, the severity of tests and the trust we want to put into the buffer.

Our approach, however, only considers the model risk at a micro level since we do
not consider the endogeneity of risk at the macro level. Indeed, external and uni-
form regulatory risk constraints may lead to the amplification of a crisis by reducing
liquidity (Dańıelsson, 2002). This systemic endogenous risk reflects the fact that the
measurement of risk has not fully taken into account the possible domino macro-
effect of a crisis in violent market turbulence.

Our work can be extended in several ways. Our general correction framework can
be used when comparing the various tests on a good VaR quality proposed in the
literature (Berkowitz et al., 2010). The second extension could be to apply some
specific VaR model when judging the riskiness of some non-linear products using,
this time, several pricing models. In the same vein, evaluating the impact on asset
allocation of integrating the model risk of risk measures could be of interest, especially
for asset allocation paradigms depending on risk budgets (e.g. safety first criteria).
The third extension could be found in generalizing the comparison considering several
time-horizons (Hoogerheide et al., 2011) or several quantile levels (Colletaz et al.,
2011). Another research proposal would be in adopting the same approach leading to
an estimated multi-VaR, built as a portfolio of various VaR models, directly aiming
to minimize the model risk (McAleer et al., 2011). Finally, using the same metric
of corrections, the quality of other VaR-based measures in a context of systemic risk
measures (such as the Marginal Expected Shortfall or the CoVaR) would be worth
considering (e.g. Dańıelsson et al., 2011b; Benoit et al., 2011; Löffler and Raupach,
2011).
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Dańıelsson J., (2002), “The Emperor has No Clothes: Limits to Risk Modelling”,
Journal of Banking and Finance 26(4), 1273-1296.
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Gouriéroux C. and J.-M. Zaköıan, (2010), “Estimation Adjusted VaR”, mimeo CREST,
39 pages.

Gray S., (1996), “Modelling the Conditional Distribution of Interest Rates as a
Regime-Switching Process”, Journal of Financial Economics 42(1), 27-62.

Haas M., (2005), “Improved Duration-based Backtesting of Value-at-Risk”, Journal
of Risk 8(2), 17-38.

Haas M., S. Mittnik and M. Paolella, (2004), “A New Approach to Markov-Switching
GARCH Models”, Journal of Financial Econometrics 2(4), 493-530.

Hamilton J. and R. Susmel, (1994), “AutoRegressive Conditional Heteroskedasticity
and Changes in Regime”, Journal of Econometrics 64(1-2), 307-333.

Hartz C., S. Mittnik and M. Paolella, (2006), “Accurate Value-at-Risk Forecasting
based on the Normal-GARCH Model”, Computational Statistics and Data Analysis
51(4), 2295-2312.

Hoogerheide L., F. Ravazzolo and H. van Dijk, (2011), “Backtesting Value-at-Risk
using Forecasts for Multiple Horizons, a Comment on the Forecast Rationality Tests
of A.J. Patton and A. Timmermann”, Tinbergen Institute Discussion Paper TI 2011-
131/4, 15 pages.

Jorion P., (2007), Value-at-Risk: The New Benchmark for Managing Financial Risk,
McGraw-Hill, 600 pages.

30



Jorion P., (2009-a), Financial Risk Manager Handbook, Wiley, 717 pages.

Jorion P. (2009-b), “Risk Management Lessons from the Credit Crisis”, European
Financial Management 15(5), 923-933.

Kerkhof J., B. Melenberg and H. Schumacher, (2010), “Model Risk and Capital
Reserves”, Journal of Banking and Finance 34(1), 267-279.

Klaassen F., (2002), “Improving GARCH Volatility Forecasts with Regime-Switching
GARCH”, Empirical Economics 27(2), 363-394.

Kupiec P., (1995), “Techniques for verifying the Accuracy of Risk Measurement
Models”, Journal of Derivatives 3(2), 73-84.

Löffler G. and P. Raupach, (2011), “Robustness and Informativeness of Systemic
Risk Measures”, mimeo, 28 pages.

Longin F., (2000), “From VaR to Stress Testing: The Extreme Value Approach”,
Journal of Banking and Finance 24(7), 1097-1130.

Lönnbark C., (2010), “Uncertainty of Multiple Period Risk Measures”, Umea Eco-
nomic Studies 768, 37 pages.

Lopez J., (1999), “Regulatory Evaluation of Value-at-Risk Models”, Journal of Risk
1(2), 37-64.

Lopez J., (1998), “Methods for Evaluating Value-at-Risk Estimates”, Federal Reserve
Bank of San Francisco 98-02, 3-17.

Martins-Filho C. and F. Yao, (2006), “Estimation of Value-at-Risk and Expected
Shortfall based on Non-linear Models of Return Dynamics and Extreme Value The-
ory”, Studies in Nonlinear Dynamics & Econometrics 10(2), 41 pages.
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mandments for Managing Value-at-Risk under the Basel II Accord”, Journal of Eco-
nomic Surveys 23(5), 850-855.

Nieto M. and E. Ruiz, (2008), “Measuring Financial Risk: Comparison of Alternative
Procedures to estimate VaR and ES”, Statistics and Econometrics Working Paper -
University Carlos III, 45 pages.

Pérignon Ch. and D. Smith, (2010), “The Level and Quality of Value-at-Risk Dis-
closure by Commercial Banks”, Journal of Banking and Finance 34(2), 362-377.

Pérignon Ch. and D. Smith, (2008), “A New Approach to Comparing VaR Estima-
tion Methods”, Journal of Derivatives 16(2), 54-66.

Pritsker M., (1997), “Evaluating Value-at-Risk Methodologies: Accuracy versus
Computational Time”, Journal of Financial Services Research 12(2), 201-242.

31



RiskMetrics, (1996), Technical Document, Morgan Guaranty Trust Company of New
York, 296 pages.

Silber W., (2005), “What Happened to Liquidity when World War I Shut the NYSE?”,
Journal of Financial Economics 78(3), 685-701.
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A Appendix: Main Backtest Procedures

A variety of tests have been proposed in the literature to gauge the accuracy
of VaR estimates, based on the three good properties that we should expect from
a risk model such as the right frequency of violations, the independence of hits and
the restricted magnitude of exceptions. The first test for a good VaR is the so-
called “traffic light” approach in the regulatory framework is related to the Kupiec
(1995) Proportion of Failure Test. The Unconditional Coverage test (Kupiec, 1995)
attempts to determine whether the observed frequency of exceptions is consistent
with the expected frequency of exceptions according to a chosen VaR model and
a confidence interval (an exception occurs when the ex post return is below of the
ex ante VaR). The so-called “Hit variable” associated to the ex post observation of
EVaR(·) violations at the threshold α and time t, denoted IEVaR

t (α), is defined such
as (with previous notations):

I
EVaR(·)
t (α) =

{
1 if rt < −EVaR(θ̂, α, N)t−1

0 otherwise,
(A.1)

where rt is the return on portfolio P at time t, with t = [1, 2, . . . , T ].

If we assume that the IEVaR
t (·) variables are Independently and Identically Distrib-

uted, then, under the Unconditional Coverage hypothesis (Kupiec, 1995), the to-
tal number of VaR exceptions (Cumulated Hits) follows a Binomial distribution
(Christoffersen, 1998), denoted B(T, α), such as:

Hit
EVaR(·)
t (α) =

T∑
t=1

I
EVaR(·)
t (α) ∼> B(T, α). (A.2)

A perfect sequence of (corrected) empirical VaR in the sense of this test (not too
aggressive, but not too confident), is such that it respects condition (A.2).

The second test for a good VaR concerns the independence of forecasting errors. The
independence hypothesis is associated to the idea that if the VaR model is correct
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then violations associated to VaR forecasting should be independently distributed,
it is also called independence of exceptions hypothesis. If the exceptions exhibited
some type of “clustering”, then the VaR model may fail to capture the profit and loss
variability under certain conditions, which could represent a potential problem down
the road. Christoffersen (1998) supposes that, under the alternative hypothesis of
VaR inefficiency, the process of IEVaR

t (α) violations is modelled with a Markov chain
whose matrix of transition probabilities is defined by:

Π =

(
π00 π01

π10 π11

)
, (A.3)

where πij = Pr
[
IEVaR
t (α) = j|IEVaR

t−1 = i
]
. This Markov chain reflects the existence of

an order 1 memory in the process IEVaR
t (α). The probability of having a violation (not

having one) for the current period depends on the occurrence or not of a violation
(for the same level of coverage rate) in the previous period. Christoffersen (1998)
shows that the likelihood ratio for the test is:

LRindIEVaR
t (α) = 2

[
log LIEVaR

t (α)(π01, π11) − log LIEVaR
t (α)(π, π)

]
∼> χ2(1), (A.4)

where LIEVaR
t (α)(π01, π11) is thus the likelihood under the hypothesis of the first-order

Markov dependence, and LIEVaR
t (α)(π, π) is the likelihood under the hypothesis of

independence π01 = π11 = π such as:

LIEVaR
t (α)(π01, π11) = (1 − π01)

T00πT10
01 (1 − π11)

T10πT11
11 ,

and:
LIEVaR

t (α)(π, π) = (1 − π)T00+T10πT01+T11 ,

with Tij the number of observations in the state j for the current period and at
state i for the previous period, π01 = T01/(T00 + T01), π11 = T11/(T10 + T11) and
π = (T01 + T11)/T .

A perfect sequence of corrected (empirical) VaR in the sense of this test (i.e. not too
reactive, but not too smooth), is such that it respects condition (A.4).

A third class of tests focuses on the magnitude of the losses experienced when VaR es-
timates are exceeded. The underlying idea is that a small violation might acceptable
but that a large one can lead to bankruptcy. In other words, not only the number
of violations should be under scrutiny, but also super-exceptions. Berkowitz (2001)
proposes a hypothesis test for determining whether the magnitudes of observed VaR
exceptions are consistent with the underlying VaR model. The key intuition is that
VaR exceptions are treated as continuous random variables and not converted into
the indicator variable used for the coverage tests. For this test, Berkowitz (2001)
transforms the empirical series into standard normal zt+1 series. If the observed
quantile qt+1 with the distribution forecast ft+1 for the observed portfolio return rt,
is defined as:
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qt+1 =

∫ rt+1

−∞
ft+1(r)dr. (A.5)

The zt+1 values are then compared to the normal random variables with the desired
coverage level of the VaR estimates:

zt+1 = Φ−1(qt+1), (A.6)

where Φ−1(·) is the quantile function of the standard normal density.

If the VaR model generating the empirical quantiles is correct, then the γt+1 series
should be identically distributed with the unconditional mean and standard devia-
tion, denoted (µ, σ), should equal (0, 1), such as:

γt+1 =

{
zt+1 if zt+1 < Φ−1(α)
0 otherwise,

(A.7)

where Φ(·) is the standard normal cumulative distribution function.

Finally, the corresponding test statistic is:

LRmagγt+1 = 2
[
Lγt+1

mag (µ, σ) − Lγt+1
mag (0, 1)

] ∼> χ2(2), (A.8)

where:

Lγt+1
mag (µ, σ) =

∑
{γt+1=0} log

{
1 − Φ

{
Φ−1(α)−µ

σ

}}
+

∑
{γt+1 �=0}

{
−1

2
log(2πσ2) − (γt+1−µ)2

2σ2 − log
{

Φ
{

Φ−1(α)−µ
σ

}}}
.

A perfect sequence of (corrected) empirical VaR in the sense of this test (i.e. not too
conservative, but not too over-confident), is such that it respects condition (A.(calc)
Package calc Error: ‘’ invalid at this pointSee the calc package documentation for
explanation.I expected to see one of: + - * / )8).

For both unconditional and conditional coverage tests7, Escanciano and Olmo (2009,
2010a and 2010b) alternatively approximate the critical values of these tests by
using a sub-sampling bootstrap methodology, since they show that the coverage VaR
backtest is affected by model misspecification. Thus, they propose to use robust sub-
sampling techniques to approximate the true distribution of these tests. However,
they also show that although the estimation risk can be diversified by choosing a
large in-sample size relative to out-of-sample one, the risk associated to the model
cannot be eliminated using sub-sampling.

Indeed, let Gx(x) denotes the cumulative distribution function of the test statistic k
for any x ∈ IR, and, kb,t = K(t, t + 1, · · · , t + b − 1), with t = [1, 2, · · · , T − b + 1],
the test statistic computed with the subsample [1, 2, · · · , T − b + 1] of size b.

7The conditional coverage test proposed by Christoffersen (1998) combines an unconditional
coverage test (the frequency corresponds to the probability) and the independence test (see above).
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Hence, the approximated sampling cumulative distribution function of k, denoted
Gkb

(x), built using the distribution of the values of kb,t computed over the (T −b+1)
different consecutive subsamples of size b is given by:

Gkb
(x) = (T − b + 1)−1

T−b+1∑
t=1

1I{kb,t<x}. (A.9)

The (1 − τ)th sample quantile of Gkb
, is given by:

ckb,1−τ = inf︸︷︷︸
x∈ IR

{x |Gkb
(x) ≥ 1 − τ} . (A.10)
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B Miscaleneous Complementary Results (Web Ap-

pendixes)

Table A.1. Illustrations of Unconditional Simulated Errors associated to
the 95%, 99% and 99.5% Annualized VaR: Gaussian versus t-Student

Quantiles

Panel A. Gaussian DGP and Gaussian VaR
with Estimation Error

Mean Perfect Mean Median Min. Max.
Probability Estimated VaR VaR Bias Bias Bias Bias
α = 95.00% -29.49% -29.49% .00% .00% -7.93% 7.24%
α = 99.00% -41.88% -41.88% .00% .00% -9.92% 9.17%
α = 99.50% -46.41% -46.41% .00% .00% -12.45% 10.16%

Panel B. t-Student(5) DGP and Gaussian VaR
with Specification Error

Mean Perfect Mean Median Min. Max.
Probability Estimated VaR VaR Bias Bias Bias Bias
α = 95.00% -29.49% -36.22% 6.73% 6.73% 6.73% 6.73%
α = 99.00% -41.88% -60.75% 18.87% 18.87% 18.87% 18.87%
α = 99.50% -46.41% -72.87% 26.46% 26.46% 26.46% 26.46%

Panel C. t-Student(5) DGP and Gaussian VaR
with Specification and Estimation Errors

Mean Perfect Mean Median Min. Max.
Probability Estimated VaR VaR Bias Bias Bias Bias
α = 95.00% -29.49% -36.22% 6.73% 6.73% -1.20% 13.97%
α = 99.00% -41.88% -60.75% 18.87% 18.87% 8.95% 28.04%
α = 99.50% -46.41% -72.87% 26.46% 26.46% 14.01% 36.62%

Source: Bloomberg; daily data of the DJIA A index in USD from the 1st January 1900 to the 20th

September 2011; computations by the authors. This statistics were computed with the results on
100,000 simulated series of 250 daily returns according to a specific DGP (Gaussian for Panel A and
t-Student(5) for Panel B and C) and using an annualized parametric VaR. The columns represent
respectively the average Estimated VaR with specification or/and estimation errors, the Theoret-
ical VaR, and the average-minimum-maximum of the adjustment term of all samples. A positive
adjustment term indicates that the Estimated VaR (negative return) should be more conservative
(more negative).
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Table A.2. Estimated Annualized VaR and Model-risk Errors (%) in the
Brownian Case

Three price processes of the asset returns are considered below, such as for t = [1, · · · , T ] and
p = [1, 2, 3]:

dSt = St(µdt + σdWt + Jp
t dNt),

with J1
t = 0 for Brownian, where St is the price of the asset at time t, Wt is a standard Brownian

motion, independent from the Poisson process Nt, governing the jumps of various intensities Jp
t

(null, constant or time-varying according to the process p).

Panel A. Gaussian DGP and Gaussian VaR
with Estimation Error

Mean Perfect Mean Median Min. Max.
Probability Estimated VaR VaR Bias Bias Bias Bias
α = 95.00% -24.78% -24.78% -.06% -.06% -8.69% 10.16%
α = 99.00% -35.74% -35.74% -.11% -.11% -14.21% 20.70%
α = 99.50% -39.95% -39.95% .09% .09% -16.04% 28.92%

Panel B. Brownian DGP and Gaussian VaR
with Specification Error

Mean Perfect Mean Median Min. Max.
Probability Estimated VaR VaR Bias Bias Bias Bias
α = 95.00% -29.49% -36.22% 6.73% 6.73% 6.73% 6.73%
α = 99.00% -41.88% -60.75% 18.87% 18.87% 18.87% 18.87%
α = 99.50% -46.41% -72.87% 26.46% 26.46% 26.46% 26.46%

Panel C. Brownian DGP and Gaussian VaR
with Specification and Estimation Errors

Mean Perfect Mean Median Min. Max.
Probability Estimated VaR VaR Bias Bias Bias Bias
α = 95.00% -29.49% -36.22% 6.73% 6.73% -1.20% 13.97%
α = 99.00% -41.88% -60.75% 18.87% 18.87% 8.95% 28.04%
α = 99.50% -46.41% -72.87% 26.46% 26.46% 14.01% 36.62%

Source: simulations by the authors. Errors are defined as the difference between the “true” as-
ymptotic simulated VaR and the Estimated VaR. These statistics were computed with a series of
250,000 simulated daily returns with specific DGP (Brownian), averaging the parameters estimated
in Aı̈t-Sahalia et al. (2010, Table 5, i.e. β=41.66%, λ3=1.20% and γ=22.22%), and ex post recal-
ibrated for sharing the same first two moments (i.e. µ=.12% and σ=1.02%) and the same mean
jump intensity (for the two last processes such as - which leads after rescaling here, for instance,
to an intensity of the Lévy such as: λ2=1.06%). Per convention, a negative adjustment term in
the table indicates that the Estimated VaR (negative return) should be more conservative (more
negative).
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Table A.3. Estimated Annualized VaR and Model-risk Errors (%) in the
Lévy Case

Three price processes of the asset returns are considered below, such as for t = [1, · · · , T ] and
p = [1, 2, 3]:

dSt = St(µdt + σdWt + Jp
t dNt),

with J2
t = λ2exp(−λ2t) for Lévy, where St is the price of the asset at time t, Wt is a standard

Brownian motion, independent from the Poisson process Nt, governing the jumps of various inten-
sities Jp

t (null, constant or time-varying according to the process p), defined by parameters, λ2,
which is some positive constant.

Panel A. Gaussian DGP and Gaussian VaR
with Estimation Error

Mean Perfect Mean Median Min. Max.
Probability Estimated VaR VaR Bias Bias Bias Bias
α = 95.00% -24.78% -24.78% -.06% -.06% -8.69% 10.16%
α = 99.00% -35.74% -35.74% -.11% -.11% -14.21% 20.70%
α = 99.50% -39.95% -39.95% .09% .09% -16.04% 28.92%

Panel B. Lévy DGP and Gaussian VaR
with Specification Error

Mean Perfect Mean Median Min. Max.
Probability Estimated VaR VaR Bias Bias Bias Bias
α = 95.00% -29.49% -36.22% 6.73% 6.73% 6.73% 6.73%
α = 99.00% -41.88% -60.75% 18.87% 18.87% 18.87% 18.87%
α = 99.50% -46.41% -72.87% 26.46% 26.46% 26.46% 26.46%

Panel C. Lévy DGP and Gaussian VaR
with Specification and Estimation Errors

Mean Perfect Mean Median Min. Max.
Probability Estimated VaR VaR Bias Bias Bias Bias
α = 95.00% -29.49% -36.22% 6.73% 6.73% -1.20% 13.97%
α = 99.00% -41.88% -60.75% 18.87% 18.87% 8.95% 28.04%
α = 99.50% -46.41% -72.87% 26.46% 26.46% 14.01% 36.62%

Source: simulations by the authors. Errors are defined as the difference between the “true” as-
ymptotic simulated VaR and the Estimated VaR. These statistics were computed with a series of
250,000 simulated daily returns with specific DGP (Lévy), averaging the parameters estimated in
Aı̈t-Sahalia et al. (2010, Table 5, i.e. β=41.66%, λ3=1.20% and γ=22.22%), and ex post recali-
brated for sharing the same first two moments (i.e. µ=.12% and σ=1.02%) and the same mean
jump intensity (for the two last processes such as - which leads after rescaling here, for instance,
to an intensity of the Lévy such as: λ2=1.06%). Per convention, a negative adjustment term in
the table indicates that the Estimated VaR (negative return) should be more conservative (more
negative).
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Table A.4. Estimated annualized VaR and model-risk errors (%) in the
Hawkes Case

Three price processes of the asset returns are considered below, such as for t = [1, · · · , T ] and
p = [1, 2, 3]:

dSt = St(µdt + σdWt + Jp
t dNt),

with J3
t = λ3 + βexp[−γ(t − s)] for Hawkes, where St is the price of the asset at time t, Wt

is a standard Brownian motion, independent from the Poisson process Nt, governing the jumps
of various intensities Jp

t (null, constant or time-varying according to the process p), defined by
parameters, λ3, β and γ, which are some positive constants with s the date of the last observed
jump.

Panel A. Gaussian DGP and Gaussian VaR
with Estimation Error

Mean Perfect Mean Median Min. Max.
Probability Estimated VaR VaR Bias Bias Bias Bias
α = 95.00% -24.78% -24.78% -.06% -.06% -8.69% 10.16%
α = 99.00% -35.74% -35.74% -.11% -.11% -14.21% 20.70%
α = 99.50% -39.95% -39.95% .09% .09% -16.04% 28.92%

Panel B. Hawkes DGP and Gaussian VaR
with Specification Error

Mean Perfect Mean Median Min. Max.
Probability Estimated VaR VaR Bias Bias Bias Bias
α = 95.00% -29.49% -36.22% 6.73% 6.73% 6.73% 6.73%
α = 99.00% -41.88% -60.75% 18.87% 18.87% 18.87% 18.87%
α = 99.50% -46.41% -72.87% 26.46% 26.46% 26.46% 26.46%

Panel C. Hawkes DGP and Gaussian VaR
with Specification and Estimation Errors

Mean Perfect Mean Median Min. Max.
Probability Estimated VaR VaR Bias Bias Bias Bias
α = 95.00% -29.49% -36.22% 6.73% 6.73% -1.20% 13.97%
α = 99.00% -41.88% -60.75% 18.87% 18.87% 8.95% 28.04%
α = 99.50% -46.41% -72.87% 26.46% 26.46% 14.01% 36.62%

Source: simulations by the authors. Errors are defined as the difference between the “true” as-
ymptotic simulated VaR and the Estimated VaR. These statistics were computed with a series of
250,000 simulated daily returns with specific DGP (Hawkes), averaging the parameters estimated
in Aı̈t-Sahalia et al. (2010, Table 5, i.e. β=41.66%, λ3=1.20% and γ=22.22%), and ex post recal-
ibrated for sharing the same first two moments (i.e. µ=.12% and σ=1.02%) and the same mean
jump intensity (for the two last processes such as - which leads after rescaling here, for instance,
to an intensity of the Lévy such as: λ2=1.06%). Per convention, a negative adjustment term in
the table indicates that the Estimated VaR (negative return) should be more conservative (more
negative).
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Table A.5. A Road Map of the Main Risk Model Validation Tests

Exception Frequency Tests
Intuition: test the violation frequency that should be equal to the probability threshold

An Unconditional Coverage Test Kupiec (1995)
A GMM Duration Test - Candelon et al. (2010)

A Z-test - Jorion (2007)
A Multi-variate Unconditional Coverage Test - Prignon and Smith (2008)

Exception Independence Tests
Intuition: test the violations associated to the VaR forecasting that should be independent

(not clustered and/or no forecasting power via a time-series model for extremes)

An Independence Test - Christoffersen (1998)
A Violation Duration-based Test - Christoffersen and Pelletier (2004)

A Discrete Violation Duration-based Test - Haas (2005)
A Dynamic Quantile Test - Engle and Manganelli (2004)

A GMM Duration Test Candelon et al. (2010)
A Multivariate Test of Zero-autocorrelation of Violations - Hurlin and Tokpavi (2007)
An Estimation-risk adjusted Test - Escanciano and Olmo (2009, 2010-a and 2010-b)

Exception Frequency and Independence of Violations Tests
Intuition: test jointly the hit ratio and the independence of VaR violations

A Conditional Coverage Test - Christoffersen (1998)
A GMM Duration Test Candelon et al. (2010)

A Dynamic Binary Response Test - Dumitrescu et al. (2011)

Exception Magnitude Tests
Intuition: test the amplitude of VaR violations (that should be small)

A Magnitude Test (under normality assumption) - Berkowitz (2001)
A Test based on a Loss Function - Lopez (1998 and1999)

A Two-stage Test (Coverage Rate and Loss Function) - Angelidis and Gegiannakis (2007)
A Double-threshold Test Colletaz et al. (2010)

Exceedances for Expected Shortfall Test
Intuition: Measure the observed ES, then compare to a local approximated value

(and the difference should be small)

A Saddlepoint Technique Test for ES - Wong (2008 and 2010)

See, among others, Campbell (2007), Nieto and Ruiz (2008) and Berkowitz et al.
(2010) for comprehensive surveys.
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Table A.7. Ratio k of Maximum Negative Annualized Adjustment
Values out of Annualized Value-at-Risk Models

VaR Methods Mean VaR q1 q∗1 q2 q∗2 q3 q∗3
Historical -25.78% 1.37 1.08 2.29 1.53 1.59 2.79
Normal -27.09% 1.26 .84 1.84 1.31 1.32 2.18
Student -30.52% 1.02 .73 1.52 1.04 1.04 2.31
Cornish-Fisher -20.25% 2.45 2.73 3.88 3.76 2.72 3.88
RiskMetrics -25.67% .71 19.77 56.18 40.47 35.84 100.69
GARCH -25.99% .59 .75 1.65 .85 .94 1.35
CAViaR -26.84% 9.95 8.82 22.89 7.9 7.55 6.6
GEV -29.71% 1.01 .72 1.37 1.13 1.06 2.24
GPD -33.97% 1.04 .69 1.64 1.21 1.01 2.63

Source: Bloomberg; daily data of the DJIA A index in USD from the 1st January 1900 to the
20th September 2011; computations by the authors. We use a moving window of four years (1,040
daily returns) to dynamically re-estimate parameters for the various methods. The variable q1

refers to Hit test; q∗1 to Escanciano and Olmo (2010) unconditional test; q2 to independence test;
q∗2 to Escanciano and Olmo (2010) independence test, q3 to the magnitude test and q∗3 lies to the
Bootstrap sampled magnitude test.
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Figure A.1: Risk Map for Maximum Annualized Adjustment Values at
5% Confidence Levels for Tests for 95% and 99% Value-at-Risk Models

Source: Bloomberg; daily data of the DJIA A index in USD from the 1st January 1900 to the 20th

September 2011; computations by the authors. We use a moving window of four years (1,040 daily
returns) to dynamically re-estimate parameters for the various methods. The variable q1 refers to
the Hit test; q∗1 to the Escanciano and Olmo (2010) unconditional test; q2 to the independence
test; q∗2 to the Escanciano and Olmo (2010) independence test, q3 to the magnitude test and q∗3
lies to a Bootstrap-sample version of the magnitude test.
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