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ABSTRACT 

 

This paper investigates the behaviour of dynamic hedge ratios in three markets, using 

five principal variants of GARCH models and compares the forecasting performance 

of optimal hedge ratios across those models.  More specifically, using daily data of 

the spot and futures contracts of SP 500, FTSE 100, and NIKKEI 225 within the 

framework of standard GARCH, GARCH-BEKK, GARCH-ECM, GARCH-X, and 

asymmetric GARCH models, we have estimated the time-varying hedge ratios and 

compared the forecasting performances of those hedge ratios.  We have also 

computed the minimum capital risk requirement (MCRR) using those hedge ratios to 

ascertain the superiority of alternative hedging strategy that holds capital adequacy 

requirement of the fund at a minimum level.  Results based on SP 500 data show that 

MCRR estimates obtained from the GARCH-BEKK performs best among the 

GARCH class of models in most cases both for short and long hedge.  In the case of 

FTSE 100, GARCH-BEKK uniformly performs best for short hedge, whilst standard 

GARCH performs better for long hedge in most cases.  In case of NIKKEI 225, 

GARCH-X outperforms other competing models for short hedge in most cases, whilst 

the standard GARCH performs better in most cases for long hedge.  Our comparative 

results suggest that position in NIKKEI 225 contract is slightly more risky than SP 

500 and FTSE 100 contracts. 
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Forecasting Dynamic Hedge Ratios and Value at Risk Using GARCH Models: 

Evidence From SP 500 FTSE 100 and NIKKEI 225 

1. Introduction 

Since the seminal work of Working (1953), Johonson (1960), and Ederington (1979), 

there has been tremendous interest over the last half century towards the modelling 

and forecasting of the optimal hedge ratios (OHR) and alternative hedging strategies 

applied to the commodity and financial futures.  It is now well-known that the 

principal functions of futures markets are price discovery, hedging, speculation and 

risk-sharing.  Hedgers use these markets as a means to avoid the risk associated with 

adverse price change in the related cash markets.  A hedge is performed by taking 

simultaneous positions both in cash and future markets-which result in the offset of 

any loss sustained from an adverse price movement in one market, by a favourable 

price movement in another market.  The hedge ratio is simply the number of futures 

contracts needed to minimize the exposure of a unit worth position in the cash market.  

Therefore, an investor holding a long position in the cash market should short h units 

of futures contracts, where h would be the hedge ratio. 

Earlier studies during 1960s and early 1970s, employed the OLS based regression 

analysis assuming that the optimal hedge ratio is time invariant [see Johnson (1960) 

and Ederington (1979)].  However, it is now well established that most asset return 

distributions are not normal, i.e., return distributions are time varying with high 

skewness and high excess kurtosis.  As a consequence, the hedge ratio is also 

changing over time.  The development of GARCH modelling technique, to deal with 

time varying volatility, has generated renewed interest in the empirical investigation 

of the effectiveness of dynamic hedging that allows the hedge ratio to be time 
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varying.
1
  Consequently, a large body of empirical literature has accumulated since 

late 1980s and up to recent years examining the issues of relative effectiveness of 

sophisticated hedging method over much simpler and intuitively appealing traditional 

hedging methods-using currencies, commodities, stock indices, and interest rate 

products using ARCH and GARCH specifications.  Based on the evidence of time-

varying distributions of spot and future prices, the dynamic hedging strategy has 

proved superior to alternative hedging strategy that holds the hedge ratio constant. 

Given the plethora of literature, there are serious gaps in the current research 

strand in two directions.  Firstly, previous research has evaluated the relative 

effectiveness of alternative hedging strategies by examining the in-sample and out-of-

sample performance of variance reduction of portfolios of returns in the cash and 

futures markets based on the information of hedge ratios, spot and futures prices of 

the assets.  Surprisingly, however, from a risk management perspective, there has 

been no attempt to evaluate the forecasting accuracy and performance of the estimated 

hedge ratios derived from those econometric models.  Indeed, knowledge of 

forecasting ability of optimal hedge ratio/dynamic hedge ratio is important for 

understanding the role of futures markets in equity trading, program trading, index 

arbitrage and the development of optimal hedging and trading strategies in fund 

management.  Careful selection of derivatives contracts is conditional upon the 

accuracy of OHR estimates and volatility forecasting techniques.  Secondly, given 

that hedge ratios of various portfolios are predictable, an investor always prefers a 

portfolio with a lower financial capital to reach the maximum of risk reduction.  The 

determination of optimal hedge ratio helps the investor to choose the optimal 

portfolios with suitable futures and a reasonable number of futures contracts.  There is 

                                                           

1
See Choudhry (2009) and Kroner and Sultan (1993) and a list of references therein. 
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scanty research which conducts a comparative evaluation of the minimum capital risk 

requirements (MCRR) using those hedge ratios that holds capital adequacy 

requirement of the fund at a minimum level.. 

 

This article, therefore, investigates the behaviour of dynamic hedge ratios in three 

markets, using five principal variants of GARCH models and compares the 

forecasting performance of optimal hedge ratios across those models.  More 

specifically, using daily data of the spot and futures markets of USA, UK, and Japan 

within the framework of standard GARCH, GARCH-BEKK, GARCH-ECM, 

GARCH-X, and asymmetric GARCH models, we have estimated the time-varying 

hedge ratios and compared the forecasting performances of those hedge ratios.  We 

have also computed the minimum capital risk requirement (MCRR) using those hedge 

ratios to ascertain the superiority of alternative hedging strategy that holds capital 

adequacy requirement of the fund at a minimum level. 

We have chosen the stock index futures contracts of those countries in our 

investigation.  Stock index futures contracts, in particular, offer opportunities to 

unbundling the market and non-market components of risk and return to investment 

banks, security houses, fund managers and individual investors.  For example, stock 

index futures are routinely used in program trading and index arbitrage to achieve 

portfolio insurance or arbitrage purpose by exploiting the relationship between the 

cash value of the index and the futures on the index.  Fund managers use them to 

alter, temporarily, the systematic risk of a portfolio without having to buy or sell its 

constituent stock.  The paper is organized as follows.  Section 2 describes and 

discusses the optimal hedge ratio and the five GARCH models.  The data and 

preliminary diagnostics are described in Section 3.  Sections 4-7 offer the empirical 
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results based upon estimating conventional and dynamic hedging models and the final 

section offers a summary and conclusion. 

2. Estimation of Optimal Hedge Ratios and the GARCH Models 

2.1. The Hedge Ratio 

Johnson’s (1960) risk minimizing hedge ratio h
*
 is defined as: 
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where Rc and Rf denotes return on spot and future indices.  The optimal hedge ratio 

(OHR) then is computed as the slope coefficient of the following regression: 

 tftct RR εβα ++=         (2) 

where εt is an error term.
2
 A β = 0 implies unhedged position; β = 1 signifies a fully 

hedged position; and β < 1 implies a partial hedge. 

It is now well-known in the literature that the conventional hedging model has 

shortcomings.  As the distribution of futures and spot prices are changing through 

time, h
*
 which is expressed as the ratio of  covariance between futures returns and 

cash returns and variance of futures returns, moves randomly through time 

[Checchetti et al. (1988), Baillie and Myers (1991), Kroner and Sultan (1993)].  

Therefore eq.(2) should be modified as: 
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2
 The OLS estimation of the hedge ratio from equation (2) is based on the assumption of time invariant 

asset distributions suggested by Ederington (1979), and Anderson and Danthine (1980). 
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In eq. (3), conditional moments are changing as the information set, ΩT, is updated, 

consequently, the number of futures contracts held and the optimal hedge ratio will 

also change through time-hence the t subscripts of hT
*
.  Under the condition of time-

varying distribution, the bivariate GARCH model is utilized to estimate the time-

varying hedge ratios to approximate the dynamic hedging strategies. 

2.2. Bivariate GARCH Model 

The time-varying hedge ratios are estimated from five variants of bivariate 

GARCH models: standard GARCH, GARCH-ECM, GARCH-BEKK, GARCH-GJR 

and GARCH-X.  The following bivariate GARCH(p,q) model is applied to returns 

from the stock cash and futures markets: 

tty εµ +=         (4) 
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Where ),( f

t

c

tt rry =  is a (2x1) vector containing stock returns from the cash and 

futures markets.  Ht is a (2x2) conditional covariance matrix, C is (3x1) parameter 

vector of constant, Ai and Bj are (3x3) parameter matrices, and vech is the column 

stacking operator that stacks the lower triangular portion of a symmetric matrix 

To make the estimation amenable, Engle and Kroner (1995) have suggested 

various restrictions to be imposed on the parameters of Ai and Bj matrices.  A 

parsimonious representation may be achieved by imposing a diagonal restriction on 

the parameter matrices so that each variance and covariance element depends only on 

its own past values and prediction errors.  The following equations represent a 

diagonal vech bivariate GARCH(1,1) conditional variance equation(s): 
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)(( 1,1111
2
)1,1111,11 −− ++= ttt HBACH ε     (7a) 

)()( 1,12221,2,1,1222,12 −−− ++= tttt HBACH εε     (7b) 

)()( 1,2233
2

1,233322 −− ++= tt HBACH ε     (7c) 

In the bivariate GARCH(1,1) model, the diagonal vech parameterization involves nine 

conditional variance parameters. 

Using the bivariate GARCH model, the time-varying hedge ratio can be 

computed as: 

ttt HHh ,22,12
* ˆ/ˆ=        (8) 

Where tH ,12
ˆ  is the estimated conditional covariance between the cash and futures 

returns, and tH ,22
ˆ  is the estimated conditional variance of futures returns.  Since, the 

conditional covariance is time-varying the optimal hedge would be time-varying too. 

2.3. GARCH-ECM Model 

When the bivariate GARCH model incorporates the error correction term in the 

mean equation, it becomes the GARCH-ECM model which is presented as: 

ttt uy εδµ ++= − )1(        (9) 

Where ut-1 denotes the lagged error-correction term, retrieved from the cointegration 

regression.  Therefore, a bivariate GARCH-ECM model will be employed to account 

for the long-run relationship and basis risk (see, Kroner and Sultan 1993).  Equation 8 

still represents the hedge ratio. 

2.4. Bivariate GARCH-BEKK Model 

In the BEKK model as suggested by Engle and Kroner (1995), the conditional 

covariance matrix is parameterized to: 
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Eqs. (8) and (9) also apply to the BEKK model and are defined as before.  In eq(14) 

kiA , i = 1,...q, k = 1,...k, and kjB  j = 1,...q, k = 1,..k are NxN matrices.  The GARCH-

BEKK model is sufficiently general that it guarantees the conditional covariance 

matrix, Ht to be positive definite, and renders significant parameter reduction in the 

estimation.  For example, a bivariate BEKK GARCH(1,1) pamerization requires to 

estimate only 11 parameters in the conditional variance-covariance structure.  The 

time-varying hedge ratio from the BEKK model is again represented by equation 8. 

2.5  Bivariate GARCH-GJR Model: 

Along with the leptokurtic distribution of stock returns data, empirical research 

has shown a negative correlation between current returns and future volatility (Black, 

1976; Christie, 1982).  This negative effect of current returns on future variance is 

sometimes called the leverage effect (Bollerslev et al. 1992).  Glosten et al. (1993) 

provide a modification to the GARCH model that allows positive and negative 

innovations to returns to have different impact on conditional variance.
3
  Glosten et al. 

(1993) suggest that the asymmetry effect can also be captured simply by incorporating 

a dummy variable in the original GARCH. 

2

11

2
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2

10

2

−−−− +++= ttttt Iuu βσγαασ      (11) 

Where 11 =−tI  if 01 >−tu ; otherwise 01 =−tI . Thus, the ARCH coefficient in a 

GARCH-GJR model switches between γα +  andα , depending on whether the 

lagged error term is positive or negative.  The time-varying hedge ratio based on the 

GARCH-GJR model is also expressed as equation 8. 

                                                           

3
 There is more than one GARCH model available that is able to capture the asymmetric effect in 

volatility. According to Engle and Ng (1993), the Glosten et al. (1993) model is the best at 

parsimoniously capturing this asymmetric effect. 
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2.6  Bivariate GARCH-X Model: 

The GARCH-X model is an extension of the GARCH-ECM model as it 

incorporates the square of error correction term in the conditional covariance matrix.  

In the GARCH-X model, conditional heteroscedasticity may be modelled as a 

function of lagged squared error correction term-in addition to the ARMA terms in 

the variance/covariance equations: 
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A significant positive effect may imply that the further the series deviates from each 

other in the short run, the harder they are to predict.  The hedge ratio again is 

presented by equation 8. 

It is hypothesized that time-varying hedge ratios would be different across 

different variants of GARCH models.  Therefore, the next question arises: which one 

is more effective?  As stated earlier in this paper we apply all the above methods to 

estimate the hedge ratio, and compare their effectiveness.  We also compare the 

hedging performance of dynamic hedging strategies with traditional hedging methods. 

3. Data and Diagnostics 

The model is evaluated using daily data on stock indices and their counterpart futures 

contracts from SP500, FTSE100 and NIKKEI225.  Empirical evaluation of hedging 

performance using daily data has tremendous value for money managers, who adjust 

their portfolio as often as daily (Figlewski 1986).  Therefore, we have analysed the 

empirical models using daily data spanning the period July, 2000 to June, 2011.  

Following Park and Switzer (1995), and Choudhry (2003), of the several future 

outstanding contracts at any given time, we use the price of the nearest contract.  The 

data are collected from Datastream. 
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Descriptive statistics relating to the distribution of return indices are presented in 

Table 1.  These statistics are: mean, standard deviation, variance, a measure of 

skewness, a measure of excess kurtosis (normal value is 3), the Jarque-Bera statistics, 

and unit root test results of cash and future price indices.  The table also presents 

higher order autocorrelation Q, and ARCH effects in the returns indices series.  The 

values of the skewness statistics indicate that the density function is negatively 

skewed for both cash and future return indices for all markets except the future market 

of U.S.A.  The values of the excess kurtosis statistic are more than 2 for all countries, 

which suggest that the density function for each country has a fat tail.  The values of 

the Jarque-Bera statistic are high, suggesting the return indices are not normally-

distributed.  Judged by the skewness, excess kurtosis and Jarque-Bera statistics, it can 

be inferred that the return indices exhibit 'fat-tails' in all markets.  The data series have 

also been checked for stationarity using the Elliott-Rothenberg-Stock Dickey-Fuller 

generalized least squares (DF-GLS) unit root test.
4
  The DF-GLS test results indicate 

that each of the return indices series has no unit root.  Tests for autocorrelation in the 

first moments using the Q(20) statistic indicate that none is present in the any of the 

indices.  Finally, tests for ARCH using Engle's (1982) LM statistic generally support 

the hypothesis of time-varying variances. 

4. Empirical Results 

In this section we evaluate formally the effectiveness of conventional and time 

varying hedging models described in the preceding section.  First, Table 2 presents 

the OLS regression results of cash returns and future returns (equation 2) for all three 

                                                           

4It is well known that Augmented Dickey-Fuller (ADF) and Phillips-Perron unit root tests have low 

power in rejecting the null of a unit root and are prone to size distortion.  Elliott, Rothenberg and Stock 

(1996) proposed an alternative DF-GLS test which involves the application of a generalized least 

squares method to de-trend the data.  In the process of performing this test, the autoregressive 

truncation lag length is determined by the modified Akaike Information Criterion (AIC). 
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markets obtained by using the Cochrane-Orcutt method.  Here, daily spot changes in 

the index are regressed on daily changes in the nearby index futures contract.  

Parameter estimates of the future returns in eq. (2) represent the constant minimum 

variance hedge ratio (t-stats in parenthesis).  In all cases, the coefficient attached to 

the future returns variable is positive and highly significant.  The hedge ratio is found 

to be less than unity in all cases.  The largest coefficient is found in the case of 

FTSE100 (.9865) and lowest for NIKKEI225 (.9502).  This statistic indicates that a 

substantial portion of variability in the cash market is hedged using the futures 

instruments. 

The static bivariate regression method of the OHR suffers from several potential 

limitations, in particular the omission of the basis (error correction term) as a 

determinant of the hedge ratio and accounting for time dependence in risk.  Therefore, 

in the next step, we have estimated alternative variants of GARCH models to 

accommodate time dependence in variance/covariance and error correction term.  The 

standard GARCH, GARCH-BEKK, GARCH-GJR, are estimated without the error 

correction term in the mean equation.  GARCH-ECM incorporates the error 

correction term in the mean equation whereas the GARCH-X model incorporates the 

error correction term both in mean and variance equations. 

We are currently conducting empirical estimation.  Results with analysis would be 

available definitely before the conference date. 

6.  Measures of Forecast Accuracy 

A group of measures derived from the forecast error are designed to evaluate ex post 

forecasts.  To evaluate forecasts, different measures of forecast errors (MAE and 

MSE) are employed.  Mean errors (ME) are employed to assess whether the models 
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over or under-forecast return series.
5
  Among them, the most common overall 

accuracy measure is MSE (Diebold 2004, p. 298): 

∑
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Where e is the forecast error defined as the difference between the actual value and 

the forecasted value.
6
 

Diebold and Mariano (1995) develop a test of equal forecast accuracy to test whether 

two sets of forecast errors, say te1 and te2 , have equal mean value.  Using MSE as the 

measure, the null hypothesis of equal forecast accuracy can be represented 
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Where kγ is the k-th autocovariance of td , which can be estimated as: 

                                                           

5
 A negative ME indicates a model under forecast and a positive ME indicates over forecasting. 
6
 The lower the forecast error measure, the better the forecasting performance. However, it does not 

necessarily mean that a lower MSE automatically indicates superior forecasting ability, since the 

difference between the MSEs may be not significantly different from zero. 
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Therefore, the corresponding statistic for testing the equal forecast accuracy 

hypothesis is )(/ dVardS = , which has an asymptotic standard normal distribution. 

According to Diebold and Mariano (1995), results of Monte Carlo simulation 

experiments show that the performance of this statistic is good even for small samples 

and when forecast errors are non-normally distributed.  However, this test is found to 

be over-sized for small numbers of forecast observations and forecasts of two-steps 

ahead or greater.  

Harvey et al. (1997) further develop the test for equal forecast accuracy by modifying 

Diebold and Mariano’s (1995) approach.  Since the estimator used by Diebold and 

Mariano (1995) is consistent but biased, Harvey et al. (1997) improve the finite 

sample performance of the Diebold and Mariano (1995) test by using an 

approximately unbiased estimator of the variance of d .  The modified test statistic is 

given by 
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Through Monte Carlo simulation experiments, this modified statistic is found to 

perform much better than the original Diebold-Mariano test at all forecast horizons 

and when the forecast errors are autocorrelated or have non-normal distribution.   In 

this paper, we apply the modified Diebold-Mariano test. 

We are currently conducting empirical estimation.  Results with analysis would be 

available definitely before the conference date. 
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7 Hedging Effectiveness Minimum Capital Risk Requirement: 

Given that hedge ratios of various portfolios obtained from GARCH models are 

predictable, fund managers always prefer a portfolio with a lower financial capital.  

Over the past twenty years, financial institutions have been using economic models to 

identify and measure various markets risks using a variety of procedures and set aside 

a provision of capital for potential losses.  One popular approach is the calculation of 

Value at Risk (VaR) using in-house economic model to estimate the Minimum 

Capital Risk Requirements (MCRR).  In this section, we are evaluating hedging 

effectiveness by estimating and comparing Minimum Capital Risk Requirement 

(MCRR) for portfolio returns obtained under alternative hedging models. 

The VaR is a statistical measure of expected maximum loss on the value of the 

trading position of the asset portfolio taken by an institution which is exposed to 

market risk.  For expository convenience, we denote the value of the portfolio by R; 

the VaR can be derived from the probability distribution of the future portfolio as 

worst possible realization signified as R* such that the probability of a value lower 

than R* is: 

cdRRfRRP R −=∫=≤ ∞− 1)()( **      (19) 

where (1-c) represents the probability of lower-tail event, i. e., 5% for over 95% 

confidence level.
7
  Following Brooks et al. (2002), if we define R* in relation to a 

benchmark portfolio position such that: 

                                                           

7
 Investors wish to find this worst possible realization 

*R  at a given significance level c, such that the 

probability of exceeding this value is: 
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01

* RRR −=         (20) 

Where R0 signifies the initial position; R1 denotes lowest simulated value of the 

portfolio in case of a long futures position or the highest simulated value of the 

portfolio in the case of a short hedge position.  The maximum expected loss as a 

proportion of initial value of the portfolio will depend on the probability distribution 

of R*/R0.  Based on the assumption of lognormal distribution of asset price, the next 

step to find the fifth quantile of In(R1/R0): 

α
σ

µ
±=

−)(
0

1

R
RIn

       (21) 

Where α is the fifth quantile from a standard normal distribution, µ is the mean of 

In(R1/R0) and σ is the standard deviation of In(R1/R0). Cross-multiplying, taking the 

exponential, and after certain manipulation: 

])(1[0

* µασ +±−±= lExponentiaRR     (22) 

We calculate the MCRR for 1-day, 10-day, 20-day, 30-day, 60-day, 90-day and 180-

day investment horizons, by simulating densities of portfolio returns using Efron’s 

(1982) bootstrapping methodology which is based on a multivariate GARCH(1,1) 

model.
8
  The Monte Carlo simulation procedure used 10,000 simulated paths of 

portfolio returns based on a GARCH(1,1) model to generate an empirical distribution 

of the maximum loss. 

 

                                                                                                                                                                      

The probability density function represented by the area under the curve ranges between ∞−  to ∞  

sums up to one. 
8
 Interested  readers are referred to Brooks et. al. (2002), and Jorion (2007) for a detailed discussion. 
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Tables’ 3-5 presents the estimates of the MCRR using hedge ratios obtained from the 

alternative hedging models.  The top panel of Tables 3-5 presents MCRR for a short 

hedge (long cash and short futures) and the lower panel of the Tables 3-5 shows the 

results for a long hedge (long futures, short cash).  The results are reported in units of 

index points.  Table 3 presents the MCRR estimates based on the data of SP 500 

indices.  The results show that for short hedge, GARCH-BEKK performs best among 

the GARCH class of models in most cases.  GARCH-GJR outperforms other 

competing models only at a long investment horizon (180 day).  For long hedge, 

GARCH-BEKK outperforms other variants of GARCH models in most cases, while 

GARCH-ECM and standard GARCH outperform their competing models at 30-day 

and 90-day forecast horizons, respectively.  The long hedge positions appear to 

require slightly more MCRR than comparable short hedge positions over the forecast 

horizons.  Table 4 presents the MCRR estimates for the FTSE 100.  In the case of 

FTSE 100, GARCH-BEKK uniformly performs best among the GARCH class of 

models for short hedge.  For long hedge, standard GARCH performs better among the 

GARCH class of models in most cases, while the GARCH-ECM outperforms their 

competing models at 1-day and 10-day forecast horizons.  GARCH-BEKK 

outperforms only at 180-day investment horizon in the case of long hedge.  Table 5 

presents the MCRR estimates of Nikkei 225.  For short hedge, GARCH-X 

outperforms their competing models in four cases (10-day, 60-day, 90-day and 180-

day forecast horizons); naïve hedge outperforms in two cases (20-day and 30-day 

forecast horizons).  GARCH-BEKK outperforms best only at 1-day investment 

horizon.  For long hedge, the standard GARCH outperforms other competing models 

in four cases (1-day, 30-day, 60-day and 90-day forecast horizons).  GARCH-BEKK 

outperforms their competing models at 10-day and 180-day forecast horizons.  
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GARCH-GJR performs well at the 20-day investment horizon.  When we compare 

results across Tables 3-5, it is evident that compared to positions in SP 500 and FTSE 

100, position in NIKKEI 225 requires more capital both under short hedge and long 

hedge conditions.
9
  These comparative results suggest that position in NIKKEI 225 

contract is slightly more risky than SP 500 and FTSE 100 positions. 
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Table 1: Descriptive statistics of stock spot and futures indices return 

Statistics SP500 FTSE100 NIKKEI225 

 Cash 

Return 

Future 

Return 

Cash 

Return 

Future 

Return 

Cash 

Return 

Future 

Return 

Mean -.000045 -.000052. -.000037 -.000041 -.000213 -.000211 

Variance .000176 .000179 ,000166 .000165 .000248 .000248 

Std. Dev. .013274 .013367 ,012889 .012834 .015763 .016356 

Skewness -.115422 .049888 -.131169 -.154715 -.386679 -212760 

Kurtosis 8.55974 11.0187 6.744135 7.244107 7.268245 13.0235 

Jarque-Bera 8691.77 14393.74 5399.83 6232.07 6333.14 20127.52 

Stationarity: tµ -14.43 -13.88 -9.32 -8.86 -6.43 -4.45 

                     tτ -18.06 -17.66 -15.14 -13.77 -10.62 -8.09 

ARCH(1) 91.21 76.33 162.86 150.45 87.33 26.74 

Q(20) 75.03 64.42 106.33 106.33 21.10 40.01 

Corr( tt fs ∆∆ , )  .9796  .9846  .9700 

Note: tµ  and tτ are the Elliot-Rothenberg-Stock Dickey-Fuller generalised least squares (DF-GLS) unit root 

test statistics with allowance for a constant and trend, respectively.  5% critical values of tµ  and tτ are -

1.940 and -2.890 (see Elliot-Rothenberg-Stock 1996, Table 1). 

 

Table 2: Bivariate regression results of the constant minimum hedge ratio model 

Country Constant Future's returns Diagnostic F-test 

SP500 .00000449 (.000032) .969760 (300.24) R
2
 = .966  DW= 2.209 41051.28 

FTSE100 .00000401 (.000028) .986590 (338.36) R
2
 = .973  DW= 2.182 52511.99 

NIKKEI225 -.0000113 (.000046) .950204 (251.967) R
2
 = .950 DW= 2.256 27325.44 
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Table 3: MCRR Estimates-GARCH Hedging Models for SP500 

Days Unhedged Naïve Hedge GARCH GARH-ECM GARCH-X GARCH-BEKK GARCH-GJR 

A. Long cash and short 

futures: 

       

1 18.963 7.054 4.411 3.639 4.485 3.588 4.099 

10 57.803 14.773 14.904 12.321 14.481 11.787 13.686 

20 81.668 20.582 20.715 18.313 19.771 16.998 18.982 

30 102.467 24.603 24.773 21.478 24.319 21.491 23.572 

60 151.403 36.181 35.889 32.912 34.547 32.442 33.403 

90 194.081 43.010 45.182 41.298 43.660 41.276 41.695 

180 295.596 59.008 65.638 58.695 61.298 60.596 57.442 

B. Short cash and long 

futures: 

 

      

1 22.504 4.802 4.893 4.729 4.811 4.342 4.752 

10 67.741 14.517 249.740 14.221 14.645 13.665 15.257 

20 98.641 20.881 21.056 19.327 20.773 19.727 21.417 

30 119.313 25.929 25.655 25.749 25.949 24.205 25.949 

60 172.175 36.314 36.606 36.559 36.054 34.482 36.948 

90 218.328 45.444 43.747 45.099 46.829 44.171 44.405 

180 312.605 67.081 63.332 65.414 65.814 61.412 63.253 
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Table 4: MCRR Estimates-GARCH Hedging Models for FTSE 100 

Days Unhedged Naïve Hedge GARCH GARH-ECM GARCH-X GARCH-BEKK GARCH-GJR 

A. Long cash and short 

futures: 

       

1 83.973 15.833 16.279 16.578 57.447 13.992 14.952 

10 262.175 53.397 54.226 56.031 178.795 46.262 49.840 

20 374.122 81.953 85.206 86.234 259.484 67.819 76.334 

30 473.162 106.259 103.836 106.537 340.802 82.326 102.146 

60 735.222 160.202 158.581 164.168 499.242 116.852 153.508 

90 910.980 194.519 199.975 201.029 645.510 146.583 195.111 

180 1536.973 285.947 295.642 294.739 1027.968 213.484 316.040 

B. Short cash and long 

futures: 

 

      

1 78.186 15.513 12.250 12.151 12.974 13.216 12.644 

10 241.106 97.372 43.482 42.968 43.156 45.942 43.177 

20 369.589 85.772 62.699 63.124 63.098 64.588 75.390 

30 460.487 105.897 75.846 77.394 77.263 80.542 78.905 

60 691.725 157.584 111.259 114.375 112.361 113.321 118.410 

90 915.549 194.120 141.473 141.483 148.561 143.996 157.390 

180 1383.869 283.633 219.717 227.691 218.552 207.230 236.610 
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Table 5: MCRR Estimates-GARCH Hedging Models for Nikkei S25 

Days Unhedged Naïve Hedge GARCH GARH-ECM GARCH-X GARCH-BEKK GARCH-GJR 

A. Long cash and short 

futures: 

       

1 239.822 48.353 50.295 51.091 47.122 47.098 53.551 

10 771.738 167.238 184.896 186.126 165.827 170.760 190.902 

20 1179.075 251.738 281.408 270.975 268.370 261.713 286.438 

30 1478.117 333.898 350.482 350.168 345.223 351.833 366.535 

60 2251.929 535.715 557.208 557.956 532.205 536.463 573.116 

90 2997.880 691.073 719.441 695.283 662.742 690.808 721.009 

180 4985.781 1050.601 1074.120 1044.148 1019.737 1042.906 1120.024 

B. Short cash and long 

futures: 

 

      

1 232.187 45.916 43.806 47.629 47.834 44.976 45.337 

10 751.535 165.079 162.378 165.490 159.206 158.639 159.507 

20 1125.307 250.954 243.319 261.290 246.057 247.058 236.203 

30 1437.145 327.192 314.383 338.095 319.605 314.769 317.543 

60 2273.518 513.993 491.885 522.496 508.566 499.641 497.952 

90 2987.146 664.563 643.999 671.969 665.432 649.596 656.531 

180 4757.972 999.812 965.209 1085.807 989.464 964.268 999.076 

 

 


