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Abstract

We evaluate the effects of the recent financial crisis on an important class of debt
instruments: sovereign issues of Eurozone borrowers. Challenges to the stability of the
Euro from threats of default by several Eurozone countries have raised serious con-
cerns and led to unprecedented policy responses. We propose to study these effects by
evaluating the risk premia embedded in sovereign credit default swap (CDS) spreads
during periods of financial turmoil. These instruments provide insurance to their buy-
ers, payable in the event of default. Their spreads over riskless instruments and spreads
within the Eurozone CDS universe provide direct indications of market participants’
valuation of risk associated with the underlying sovereign debt.
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1 Introduction

One of the financial innovations highlighted as playing a key role in the recent financial

crisis is the credit default swap (CDS): essentially, an insurance policy on the payments

forthcoming from a debt instrument. Although these instruments were maligned in the

US market as having largely contributed to the demise of insurer AIG, it should be clear

that writing these instruments is no different than selling put options, and can lead to

equally disastrous consequences should the underlying debt instruments become ‘puttable’

through a credit event.

On the positive side, the development of an active CDS market has been beneficial in

providing rapid feedback on market participants’ perception of the riskiness of debt instru-

ments: in particular, sovereign debt issued by European borrowers. Unlike infrequently-

revised credit ratings, which were also heavily maligned in the collapse of US mortgage-

backed securities markets, quoted CDS spreads—like market yields—adjust quickly to mar-

ket conditions and perceptions. For instance:

”The attitude of the [European] commission also suggests a certain paranoia

that European sovereign issuers are being treated unfairly by ratings agencies.

The reverse is the case. French ten-year bonds trade on a yield more than a

percentage point higher than their German equivalents, even though both share

a AAA rating. An analysis by Exotix, a research group, found that peripheral

European nations have ratings six notches higher than emerging economies with

similar financial conditions.”1

Given the importance of CDS quoted spreads as a measure of market participants’

perceptions of default risk, we seek to exploit the information in the set of spreads on

Eurozone sovereign issuers during 2009–2010. Unlike much of the prior literature, we make

use of daily quotations rather than monthly quotations on these instruments. This provides

us with not only a much larger sample size during this turbulent period, but also allows

us to more accurately evaluate the contagion effects that may be present between different

sovereign borrowers’ spreads as sizable uncertainty over the fate of the most troubled

economies washes over the market.

1 ‘The road to self-deception’, The Economist, Nov, 12, 2011, p. 84.
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Our empirical investigation begins with a set of unconditional statistics on the interre-

lations between Eurozone sovereign borrowers, followed by the development of a model of

the dynamic interaction effects of CDS spreads across borrowers, conditioned on standard

market evaluations of the probability of default. This allows us to produce static forecasts

of CDS spreads’ evolution over this two-year period.

The next section of the paper reviews some of the literature in this field and discusses

the practitioners’ methodology for evaluation of default probabilities. Section 3 presents

our empirical methodology and findings, and Section 4 concludes and presents an outline

of further research.

2 Review of the literature

2.1 Valuation of credit default swaps

Although credit default swaps (CDS) gained widespread attention in the recent financial

crisis, they have been important financial instruments for some time, becoming “the most

widely used credit derivative product...” as of 2003.2 They serve to transfer the credit

risk related to a reference entity, such as a sovereign borrower, from one party to another,

providing the owner of the debt obligation with insurance against loss of principal value

following a defined credit event such as bankruptcy or failure to pay scheduled coupons.

In consideration, the insurer (or protection seller) receives a stream of premium payments

from the debt owner, calculated from the principal of the debt instrument and an agreed

default swap spread.

Like most derivative instruments, the CDS has zero value at its initiation, as the ex-

pected present value of premium payments is set equal to the expected payout via the

market’s determination of the default swap spread. However, like any derivative instru-

ment with option-like characteristics, the mark-to-market value of the CDS during its

lifetime may vary widely from zero, depending on the market’s revised perception of the

underlying borrower’s riskiness. During the life of the CDS, the mark-to-market (MTM)

value is the difference between the current market value of the remaining term’s protection

and the expected present value of premium payments. Both elements of MTM must take

into account the probability of a credit event. In a liquid market, MTM can be expressed

as the difference between the current spread (st) and the original spread (S0) times a factor

2 O’Kane and Turnbull, p. 1.
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known as Risky PV01,3 the expected present value of 1 bp paid as premium until default or

maturity. The riskiness arises because premium payments cease if there is a credit event.

Computation of the Risky PV01 must take into account the riskiness of each premium

payment by calculating the (arbitrage-free) probability of the reference entity surviving to

each premium payment date. This is performed with a duration model that transforms

market default swap spreads into survival probabilities by making assumptions about the

underlying hazard rates. As with any duration model, for a given perceived level of risk,

the probability of default is monotonically increasing with tenor. Using a model calibrated

to default swap spreads, market participants compute a cumulative probability of default,

or cumpdf. In this context, (1−cumpdf) = probabilityofsurvival measures the probability

that no credit event will occur before maturity of the CDS. In our modeling exercise, we

make use of cumpdf measures as a market-based evaluation of the perceived riskiness of

the underlying instrument. These measures differ by sovereign borrowers, CDS tenor, and

over time, providing a rich source of variation across these three dimensions of our daily

data.

2.2 Models of sovereign credit risk

While the empirical models in this paper make use of the Risky PV01 and cumpdf mea-

sures computed from the Lehman Brothers methodology, a substantial literature has arisen

describing analytical models of CDS spread pricing developed from first principles. In this

section, we discuss such an approach, and contrast it with several researchers’ recent efforts.

The latest contributions to the literature in this area have been focused on reduced form

models for credit risk. These reduced form models assume that default is an unpredictable

event, which can take place at any time.

In the spirit of Ang and Longstaff (2011) and Duffie and Singleton (2003), we assume

that there are two sources of stochastic shocks:

• idiosyncratic shocks with intensity ξ: this is a sovereign specific shock that can po-

tentially cause the default of an individual country;

• systemic shocks with intensity λ (with exposure γ): this is a shock that can potentially

affect all the countries in the Eurozone and can explain spillover effects from one

country to the other.

3 ibid., p. 3
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We assume that the interest rate and the intensities of the two types of shocks are

stochastic processes characterized as follows:

dr = ar (br − r) · dt+ σr ·
√
r · dwr (1)

dλ = a (b− λ) · dt+ σ ·
√
λ · dwλ (2)

dξ = aξ (bξ − ξ) · dt+ σξ ·
√
ξ · dwξ (3)

A CDS is an insurance (or protection) against the event of default. Consider a credit

default swap written on a bond. The main assumption one needs to make is related to the

portion of the underlying bond that would be recovered in case of default.

Assuming that the bond face value is 1 and the bond recovery value in case of default is

Γ, 4 then the protection seller pays (1− Γ) at time Tk if the bond defaults during [Tk−1, Tk].

The protection buyer pays the protection fee s · (Tk − Tk−1) at time Tk in case of survival

until Tk. If default takes place before Tk, then the protection buyer pays no fee at Tk or

later. In this setting, the present value of the CDS to the protection buyer at time t is

(1− Γ)·
j∑

k=1

D (r, t, Tk)·(P (λ, ξ, t, Tk−1)− P (λ, ξ, t, Tk))−s·
j∑

k=1

V (r, λ, ξ, t, Tk)·(Tk − Tk−1)

(4)

where D (r, t, Tj) is the value at time t of a default-free discount bond that will pay 1

at maturity Tj . P (λ, ξ, t, Tj) is the probability of survival over the period [t, Tj ] in the

risk-neutral world, also termed the risk-neutral survival probability. Thus P (λ, ξ, t, Tj)

is not the real-world probability of survival, which is typically greater than P (λ, ξ, t, Tj).

Notice that we can infer P (λ, ξ, t, Tj) once we know the bond prices V (r, λ, ξ, t, Tj) and

D (r, t, Tj).

Since at initiation the CDS is worthless to either party, it follows that s is set in such

a way that

sj = (1− Γ) ·
∑j

k=1D (r, t, Tk) · (P (λ, ξ, t, Tk−1)− P (λ, ξ, t, Tk))∑j
k=1 V (r, λ, ξ, t, Tk) · (Tk − Tk−1)

(5)

4We will elaborate on Γ in the following two subsections.
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The value at time t of a defaultable discount bond that promises to pay 1 at maturity

Tj is

V (t, Tj) = E∗t

[
e−
∫ Tj
t rτdτ · 1x>Tj

]
(6)

1x>Tj =

{
1 if default time x is x > Tj ,
0 if default time x is x ≤ Tj .

Here we assume that the defaultable discount bond becomes worthless in case of default.

If the default time x and the default-free short interest rate rτ are independent random

variables, we can write

V (t, Tj) = E∗t

[
e−
∫ Tj
t rτdτ · 1x>Tj

]
= E∗t

[
e−
∫ Tj
t rτdτ

]
· E∗t

[
1x>Tj

]
= D (r, t, Tj) · P (λ, ξ, t, Tj) (7)

Denote with P (λ, ξ, t, Tj) the probability, calculated at the present time t, that the

debtor does not default in the time interval [t, Tj ], with Tj > t, given that the debtor has

not yet defaulted at time t. Thus P (λ, ξ, t, Tj) is the probability of survival up to time

Tj . We assume that, given that the debtor has not yet defaulted at Tj , the probability of

default in the infinitesimally short time interval [Tj , Tj + dt] is

(γλ+ ξ) · dt

Notice that the event of default in any infinitesimal interval dt is independent of the event

of survival/default in any other time interval. Thus, the probability of default in the time

interval [Tj , Tj + dt] computed at time t and given that the debtor has not yet defaulted

at t, is

P (λ, ξ, t, Tj) · (γλ+ ξ) · dt

which is the probability of surviving during [t, Tj ] times the probability of default during

[Tj , Tj + dt].

It can be shown (see Appendix C) that:

P (λ, ξ, t, Tj−1)− P (λ, ξ, t, Tj) = P (λ, ξ, t, Tj−1) (γλ+ ξ) dt
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P (λ, ξ, t, Tj−1) (γλ+ ξ) = −∂P (λ, ξ, t, Tj−1)

∂Tj−1

When both λ and ξ are stochastic processes

P (λ, ξ, t, Tj−1) = e

−

Tj−1∫
t

(γλs+ξs)ds

.

We will develop the CDS pricing model making two possible assumptions about the

value of the bond immediately after default. Two of the main recovery assumptions we

will be dealing with in our model are

• recovery of market value (RMV).

• recovery of face value (RF);

The two assumptions are described in detail in the subsections below.

2.2.1 Recovery of market value (RMV)

As RMV simplifies the mathematics considerably, it is probably the more tractable recovery

assumption although it is generally less realistic than the RF assumption. RMV says that

V (λ, ξ, r, t, Tj) = (1− L) · V (λ, ξ, r, t, Tj−1)

0 ≤ L ≤ 1

where:

- V (λ, ξ, r, t, Tj−1) is the market value of the defaultable bond just before default

- L is the loss parameter; thus the loss is a fraction of V (λ, ξ, r, t, Tj−1);

- j is the default time and j − 1 is time just before default.

Thus RMV says that the bond recovery value is a fraction (1− L) of the bond market

value just before default V (λ, ξ, r, t, Tj−1). When V (λ, ξ, r, t, Tj−1) significantly differs

from the bond face value, the RMV assumption becomes less precise, particularly for fixed

coupon bonds of long maturity, but less so for floating rate instruments.

Under the RMV assumption a defaultable coupon bond can still be viewed and valued

as a portfolio of defaultable zero coupon bonds. The RMV assumption is made also in the
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valuation of “vulnerable” over-the-counter (OTC) derivatives, such as swaps and options

subject to default risk.

At time t the present value of the CDS to the protection buyer is

∑j
k=1 [1− (1− L) · V (λ, ξ, r, t, Tk−1)]D (r, t, Tk) · (P (λ, ξ, t, Tk−1)− P (λ, ξ, t, Tk))

− s ·
∑j

k=1V (r, λ, ξ, t, Tk) · (Tk − Tk−1) .

Since at initiation the CDS is worthless to either party, it follows that s is set in such a

way that

sj =

∑j
k=1 [1− (1− L) · V (λ, ξ, r, t, Tk−1)]D (r, t, Tk) · (P (λ, ξ, t, Tk−1)− P (λ, ξ, t, Tk))∑j

k=1V (r, λ, ξ, t, Tk) · (Tk − Tk−1)
.

where (P (λ, ξ, t, Tk−1)− P (λ, ξ, t, Tk)) is the probability of default in the time interval

[Tk−1, Tk]. Notice that in this case, we are making the assumption that the default event

can only happen once a year and we haven’t made any specific assumption about the

frequency of the payment of the premia on the CDS.

One of the models that we plan to estimate follows the steps of Duffie and Singleton

(1999), Pan and Singleton (2008), Duffie (2011) and Longstaff et al. (2011). This model

makes the Recovery Market Value (RMV) assumption: at default time j the bond value

drops to (1− L)V (λ, ξ, r, t, Tj−1). The model by Duffie and Singleton is very tractable

and popular. The main difference in our setting is that, unlike in Duffie and Singleton,

there are two sources of stochastic shocks5

Define

ψ =
√
a2 + 2σ2

A (t, Tj , a, b, σ) = ln


 2ψe

(ψ+a)(Tj−t)/2

(ψ+a)

(
e
ψ(Tj−t)−1

)
+2ψ

 2ab
σ2

.

B (t, Tj , a, b, σ) =
2

(
e
ψ(Tj−t)−1

)
(ψ+a)

(
e
ψ(Tj−t)−1

)
+2ψ

5See Appendix A for details about the properties of this model.
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D (r, t, Tj) = E∗t

[
e−
∫ Tj
t rτdτ

]
= eA(t,Tj ,ar,br,σr)−r·B(t,Tj ,ar,br,σr)

P (λ, ξ, t, Tj) = E∗t

[
e−
∫ Tj
t (γλτ+ξτ )·L·dτ

]
= eA(t,Tj ,γa,Lγb,

√
Lγσ)−λ·γ·L·B(t,Tj ,γa,Lγb,

√
Lγσ)

· eA(t,Tj ,aξ,Lbξ,
√
Lσξ)−ξ·L·B(t,Tj ,aξ,Lbξ,

√
Lσξ)

m arg inalpdf (Tj) = P (λ, ξ, t, Tj−1)− P (λ, ξ, t, Tj)

This is the probability of default in [Tj−1, Tj ] given that no default has occurred until

Tj−1.

While in the Lehman Brothers dataset the cumulative probability of default is defined

under the assumption that the instantaneous probability of default ξ (probability that

default occurs in the infinitesimally short time interval dt)is a constant, in our model

cumpdf is more general because ξ is a stochastic process:

cumpdf (x ≤ Tj) = 1− P (λ, ξ, t, Tj)

=

j∑
k=1

(P (λ, ξ, t, t+ (k − 1))− P (λ, ξ, t, t+ k))

where Tj ≡ t+ j.

This is the probability that the default event x has occurred by the end of year Tj .

V (λ, ξ, r, t, Tj) = E∗t

[
e−
∫ Tj
t (rτ+(γλτ+ξτ )·L)·dτ

]
= D (r, t, Tj) · P (λ, ξ, t, Tj)

= E∗t

[
e−
∫ Tj
t rτ ·dτ

]
· E∗t

[
e−
∫ Tj
t (γλτ+ξτ )·L·dτ

]
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V (λ, ξ, r, t, Tj) = E∗t

[
e−
∫ Tj
t rτ ·dτ

]
· E∗t

[
e−
∫ Tj
t (γλτ+ξτ )·L·dτ

]
= eA(t,Tj ,ar,br,σr)−r·B(t,Tj ,ar,br,σr)

· eA(t,Tj ,γa,Lγb,
√
Lγσ)−λ·γ·L·B(t,Tj ,γa,Lγb,

√
Lγσ)

· eA(t,Tj ,aξ,Lbξ,
√
Lσξ)−ξ·L·B(t,Tj ,aξ,Lbξ,

√
Lσξ)

Single issuer case The CDS spread for the single issuer case is given by sj,t which is the

model value of the CDS price whose quotation is taken on day t, t = 1, 2, ...M and whose

tenor is j (time to maturity j = Tj − t where Tj are the maturity dates), j = 1, 2, ....J .

The CDS give the holder protection against default of the underlying asset.

• Without loss of accuracy, we assume that the credit event (default) can occur daily.

• Consider: Tj ≡ t+ j

• The protection seller pays (1− (1− L)V (λ, ξ, r, t, Tj−1)) if default happens between

Tj−1 and Tj

• We assume that the CDS pays premia continuously (daily).

Single Issuer case

The CDS spread for the single issuer case is given by:

sj,t =
∑j
k=1[1−(1−L)V (λ,ξ,r,t,t+(k−1))]D(r,t,t+k)·(P (λ,ξ,t,t+(k−1))−P (λ,ξ,t,t+k))∑j

k=1V (λ,ξ,r,t,t+k)

min
a,b,σ,ar,brσr,aξ,bξ,σξ,γ

J∑
j=1

M∑
t=1

[sj,t − si,t (a,b, σ,ar, br, σr,aξ, bξ, σξ, γ)]2

Multi-issuer case

In the case where we have i = 1, 2, ...N possible issuers, the CDS spread becomes:

si,j,t =
∑j
k=1[1−(1−Li)Vi(λ,ξ,r,t,t+(k−1))]D(r,t,t+k)·(Pi(λ,ξ,t,t+(k−1))−Pi(λ,ξ,t,t+k))∑j

k=1Vi(λ,ξ,r,t,t+k)
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and the minimization problem would become:

min
a,b,σ,ar,brσr,[aξ],[bξ],[σξ],γ

N∑
i=1

J∑
j=1

M∑
t=1

[si,j,t − si,i,t (a,b, σ,ar, br, σr, [aξ] , [bξ] , [σξ] , γ)]2

where

[âξ] =



âξ1
âξ2
.
.

âξ10



[
b̂ξ

]
=



b̂ξ1
b̂ξ2
.
.

b̂ξN



[σ̂ξ] =



σ̂ξ1
σ̂ξ2
.
.

σ̂ξN


2.2.2 Recovery of face value (RF)

RF is normally the most realistic assumption. Assuming that the bond face value is 1, RF

says that the bond recovery value at the default time x is

V (r, λ, ξ, t, x) = R

0 ≤ R ≤ 1
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i.e. the recovery value R is a fraction of the bond face value, which is equal to 1. RF is

realistic but complicates a bit the mathematics of the valuation models.

At time t the present value of the CDS to the protection buyer is

(1−R)·
j∑

k=1

D (r, t, Tk)·(P (λ, ξ, t, Tk−1)− P (λ, ξ, t, Tk))−s·
j∑

k=1

V (r, λ, ξ, t, Tk)·(Tk − Tk−1) .

Since at initiation the CDS is worthless to either party, it follows that s is set in such a

way that

sj = (1−R) ·
∑j

k=1D (r, t, Tk) · (P (λ, ξ, t, Tk−1)− P (λ, ξ, t, Tk))∑j
k=1 V (r, λ, ξ, t, Tk) · (Tk − Tk−1)

.

where (P (λ, ξ, t, Tk−1)− P (λ, ξ, t, Tk)) is the probability of default in the time interval

[tk, tk+1].

B (t, Tj , a, b, σ) =
2
(
eψ(Tj−t) − 1

)
(ψ + a)

(
eψ(Tj−t) − 1

)
+ 2ψ

ψ =
√
a2 + 2σ2

A (t, Tj , a, b, σ) = ln

(
2ψe(ψ+a)(Tj−t)/2

(ψ + a)
(
eψ(Tj−t) − 1

)
+ 2ψ

) 2ab
σ2

V (λ, ξ, r, t, Tj) = D (r, t, Tj)P (λ, ξ, t, Tj)

= E∗t

[
e−
∫ Tj
t rτ ·dτ

]
· E∗t

[
e−
∫ Tj
t γλτ ·dτ

]
E∗t

[
e−
∫ Tj
t ξτ ·dτ

]
= eA(t,Tj ,ar,br,σr)−r·B(t,Tj ,ar,br,σr) · eA(t,Tj ,a,b,σ)−γλ·B(t,Tj ,a,b,σ)

· eA(t,Tj ,aξ,bξ,σξ)−ξ·B(t,Tj ,aξ,bξ,σξ)

It can be shown (see Appendix D for the details) that:
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(P (λ, ξ, t, Tj−1)− P (λ, ξ, t, Tj)) = −∂P (λ, ξ, t, Tj−1)

∂Tj−1

=

(
−∂A (t, Tj−1, a, b, σ)

∂Tj−1
+ γλ

∂B (t, Tj−1, a, b, σ)

∂Tj−1

)
P (λ, ξ, t, Tj−1)

+

(
−
∂A (t, Tj−1, aξ, bξ, σξ)

∂Tj−1
+ ξ

∂B (t, Tj−1, aξ, bξ, σξ)

∂Tj−1

)
P (λ, ξ, t, Tj−1)

where

P (λ, ξ, t, Tj) = eA(t,Tj ,a,b,σ)−γλ·B(t,Tj ,a,b,σ) · eA(t,Tj ,aξ,bξ,σξ)−ξ·B(t,Tj ,aξ,bξ,σξ)

∂B (t, Tj−1, a, b, σ)

∂Tj−1
= −1

2
σ2B2 (t, Tj−1, a, b, σ)− aB (t, Tj−1, a, b, σ) + 1

∂A (t, Tj−1, a, b, σ)

∂Tj−1
= −abB (t, Tj−1, a, b, σ)

m arg inalpdf (Tj) = P (λ, ξ, t, Tj−1)− P (λ, ξ, t, Tj)

= −∂P (λ, ξ, t, Tj−1)

∂Tj−1

This is the probability of default in [Tj−1, Tj ] given that no default has occurred until

Tj−1.

While in the Lehman Brothers dataset the cumulative probability of default is defined

under the assumption that the instantaneous probability of default ξ (probability that

default occurs in the infinitesimally short time interval dt), in our model cumpdf is a more

general variable defined in the following way:

cumpdf (x ≤ Tj) = 1− P (λ, ξ, t, Tj)

=

j∑
k=1

(P (λ, ξ, t, t+ (k − 1))− P (λ, ξ, t, t+ k))

= −
j∑

k=1

∂P (λ, ξ, t, Tk−1)

∂Tk−1

where Tj ≡ t+ j.
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This is the probability that the default event x has occurred by the end of year Tj .

Considering annual quotations for bonds with maturity j :

sj,t = (1−R) ·
∑j

k=1D (r, t, t+ k) · (P (λ, ξ, t, t+ (k − 1))− P (λ, ξ, t, t+ k))∑j
k=1V (λ, ξ, r, t, t+ k)

where (P (λ, ξ, t, Tk−1)− P (λ, ξ, t, Tk)) is the risk-neutral probability of default for in-

finitesimal period [Tk−1, Tk] given that no default has occurred at Tk−1 where Tk ≡ t + k

.

sj,t = (1−R) ·

∑j
k=1D (r, t, t+ k) ·

(
−∂P (λ,ξ,t,t+(k−1))

∂(t+(k−1))

)
∑j

k=1V (λ, ξ, r, t, t+ k)

Single issuer case

The CDS spread for the single issuer case is given by sj,t which is the model value of

the CDS price whose quotation is taken on day t, t = 1, 2, ...M and whose tenor is j (time

to maturity j = Tj − t where Tj are the maturity dates), j = 1, 2, ....J .

The CDS give the holder protection against default of the underlying asset.

• Without loss of accuracy, we assume that the credit event (default) can occur daily.

• Consider: Tj ≡ t+ j

• The protection seller pays (1−R) if default happens between Tj−1 and Tj where

the probability of default in [Tj−1, Tj ] is: [(P (λ, ξ, t, Tj−1)− P (λ, ξ, t, Tj))].

• We assume that the CDS pays daily premia.

The CDS spread for the single issuer case is given by:

min
a,b,σ,ar,brσr,aξ,bξ,σξ,γ

J∑
j=1

M∑
t=1

[sj,t − si,t (a,b, σ,ar, br, σr,aξ, bξ, σξ, γ)]2 (8)

• where for a fixed issuer, sj,t is the model value of the CDS price whose quotation is

taken on day k for k = 1, 2, ...M and whose tenor is j = 1, 2, ....J . The model price

depends on a,b, σ,ar, brσr,aξ, bξ, σξ, γ;
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Multi-issuer case

In this case, the CDS spread is

si,j,t = (1−Ri) ·

∑j
k=1D (r, t, t+ k) ·

(
−∂Pi(λ,ξ,t,t+(k−1))

∂(t+(k−1))

)
∑j

k=1Vi (λ, ξ, r, t, t+ k)

and the minimization becomes

min
a,b,σ,ar,brσr,[aξ],[bξ],[σξ],γ

N∑
i=1

J∑
j=1

M∑
t=1

[si,j,t − si,i,t (a,b, σ,ar, br, σr, [aξ] , [bξ] , [σξ] , γ)]2

3 Empirical methodology and findings

3.1 Descriptive measures

Our dataset includes daily quotes for one- through ten-year CDS spreads of sovereign

borrowers over all trading days of 2009–2010. We focus on eleven countries in the Eurozone:

Austria, Belgium, Germany, Spain, Finland, France, Greece, Ireland, Italy, Netherlands

and Portugal. Our descriptive statistics focus on the one-year and five-year spreads due to

their liquidity, although we make use of all available tenors in the modeling exercise. Table

1 presents summary statistics for the one-year spreads, while Table 2 presents statistics for

the five-year spreads. As is evident in both tables, five countries (Spain, Greece, Ireland,

Italy and Portugal) have markedly higher spreads over this turbulent period, and all but

Italy also exhibit much greater volatility in the levels of spreads, measured by their standard

deviation (sd).

As Germany has been considered the anchor for Eurozone sovereign debt, it is illu-

minating to evaluate CDS spreads relative to the contemporaneous German spread. In

Tables 3 and 4, we provide the descriptive statistics for one- and five-year relative spreads,

respectively, for the other ten sovereign borrowers. During this period, Finland, France

and the Netherlands exhibit relatively small spreads relative to Germany, with Austria and

Belgium considerably higher. Those three countries also have much lower volatility of their

relative spreads. During this period, market perceptions of Italian debt are converging on

that of the PIGS (Portugal, Ireland, Greece and Spain), with the median Italian relative

spread higher than that of Spain.
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In evaluating the spillover effects across borrowers, it is instructive to consider the cor-

relations of changes in their spreads. Tables 5 and 6 present these correlations for the

full sample period. As is evident, there are sizable positive correlations for both tenors,

indicating that even the most creditworthy borrowers are likely to experience some market

adjustments in their spreads when riskier borrowers’ spreads increase. At opposite ends of

the spectrum, changes in Greek (GRC) and German (DEU) spreads are correlated +0.27

at the one-year tenor and +0.46 at the five-year tenor. An evaluation of the principal com-

ponents of these eleven borrowers’ spread changes shows that the first principal component

explains 50 per cent of the variation in the entire set (and the first two, 65 per cent) for

the one-year tenor, and 66 per cent (79 per cent) for the five-year tenor.

These correlations, computed for the full sample period, may not tell the whole story.

The linkages between sovereign borrowers’ perceived risk may vary considerably over time

as political and economic circumstances change. Thus, we have computed moving-window

correlations, using a window of 21 trading days (roughly a month) for the five riskiest

borrowers’ CDS spread changes at the five-year tenor. Figures 1 and 2 illustrate some of

these correlations for Ireland and Greece, respectively.

Changes in the Irish spreads are highly correlated (+0.8 or more) with changes in the

other four risky borrowers’ spreads for the first eight months of 2009, falling to half that

value in September 2009. Closer correlations return until the onset of the Greek crisis in

May 2010, when changes in the Greek spread become very weakly correlated with those of

other borrowers. This repeats in early fall 2010. For the latter half of 2010, correlations of

Irish spreads’ changes with those of the other risky borrowers are generally lower than at

the beginning of the sample.

From the perspective of the Greek spreads (Figure 2), correlations with other borrowers’

spread changes persist though mid-2010, with the exception of the Irish episode in late 2009.

These correlation patterns then deteriorate considerably in June 2010, and become much

more variable in the latter half of that year.

3.1.1 Moving-window volatility estimates

Another focus of interest might be the volatility exhibited by these spreads, as for a given

borrower and tenor, that reflects market participants’ uncertainty about the riskiness of

the underlying sovereign debt. Accordingly, we have computed moving-window standard

deviations of the CDS quote series for each borrower and tenor. In Figure 3, we illustrate
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the moving-window volatility estimates (using a 22-day window) for the one-year tenor.

The upper panel shows correlated increases in the volatility of French and Italian CDS

spreads during spring 2010, with an earlier peak in February. That peak is echoed by

Greek spreads, which reach a much higher level of volatility in the spring of 2010.

Figure 4 compares the same borrowers’ spreads for the five-year tenor. At the longer

tenor, higher volatility of French and Italian CDS spreads persists through the latter half

of 2010. In both panels, the marked increase in uncertainty in early 2010 relative to 2009

is evident.

3.1.2 Cross-sectional volatility estimates

While the moving-window estimates reflect the market’s uncertainty about a specific bor-

rower and tenor, we might also consider the cross-sectional volatility present at each point

in time across borrowers. This abstracts from the average level of CDS spreads for each

trading day, and considers the degree to which troubled borrowers’ spreads are diverging

or converging with those of less risky borrowers. These cross-sectional volatility measures

are graphed in Figure 5 for one-year and five-year tenors.

The patterns of the moving-window volatility estimates are to some degree reflected in

the cross-sectional volatility measures. For most of 2009, volatility is low at both the one-

year and five-year tenors, increasing in February 2010 and then increasing sharply through

the rest of the year.

Although these descriptive measures are illuminating, they only provide evidence of

comovements, representing spillover effects across sovereign borrowers. We turn now to an

econometric modeling strategy, using the market-based measure of the cumulative proba-

bility of default, which formalizes these interlinkages and provides the basis for a short-term

forecasting exercise.

3.2 Modeling the evolution of sovereign CDS spreads

For each of the 11 sovereign borrowers in our sample, we have daily quotations on their

CDS spread for tenors of 1, 2, ... 10 years. We model the vector of quotes for a given

issuer and quote date, using a seemingly unrelated regression (SUR) approach where each

issuer has its own equation. This permits heterogeneity across issuers to be reflected in

not only the intercept of that equation (e.g., via fixed effects) but allows for separate
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vectors of coefficients on the explanatory variables, and differing error variances, across

issuers. The rationale for the SUR technique is the potential contemporaneous correlation

of errors across equations (issuers), which is highly relevant in this modeling context in

both economic and econometric terms.

The explanatory variables used in each equation include the previous trading day’s

cumpdf value for the country itself (the own effect) and a set of lagged cumpdf values for

each of the other countries. As the data for each equation include tenors of one to ten years,

separate intercepts are introduced by tenor, and the tenor indicators are interacted with

the own-country lagged cumpdf, allowing the effect of changes in the expected probability

of default to have differing effects on the various tenors. The estimated equation for each

country included in the SUR is thus:

Qi,τ,t = β0+β1cumpdfi,t−1+
10∑
q=2

γqτq+
10∑
j=2

βjτjcumpdfi,t−1+
∑
k∈K∗

δkcumpdfk,t−1+εi,τ,t (9)

where Qi,τ,t is the CDS spread for borrower i, tenor τ , on day t; cumpdfi,t−1 is the pre-

vious trading day’s expected probability of default for borrower i; and cumpdfk,t−1 is the

corresponding measure for borrower k 6= i, such that the set K∗ includes all borrowers

except country i. Thus, the coefficient β0 is the intercept for the one-year CDS spread,

while (β0 + γq) is the intercept for the q-year spread. The coefficient β1 expresses the sen-

sitivity of the current one-year CDS spread to the most recently computed probability of

that borrower’s default, while β2 . . . β10 express the differentials in that sensitivity for CDS

spreads for 2, . . . , 10-year tenors. The coefficients δk measure the spillover effects between

other sovereign borrowers’ expected probability of default and borrower i’s spread.

3.3 Estimation for the full sample period

We first consider estimating the SUR for the eleven sovereign borrowers over the full

sample of all trading days in 2009–2010. Summary statistics for the full-sample estimation

are given in Table 7. Although all equations fit quite well, the RMSE (root mean square

error) values, expressed in basis points, vary widely over borrowers from 1.7–2.8 bp for the

most creditworthy borrowers to 14–15 bp for Ireland and Portugal and 38 bp for Greece.

The Breusch–Pagan test for a diagonal residual covariance matrix overwhelmingly rejects

18



that null hypothesis, suggesting that there are strong contemporaneous correlations across

borrowers’ disturbance terms, as we would expect from theory.

Although it would hardly be useful to review all 319 estimated coefficients from this

model, several sets in particular are of special interest. First, we consider the effect of

changes in the expected probability of default over CDS spread tenors. These can be

computed for each borrower by summing β1 and the β2 . . . β10 coefficients. The patterns

of these effects are quite similar over borrowers, so we present only the German (DEU)

coefficients as a representative sample in Figure 6. 6 It is evident that the impact of

changes in the expected probability of default are greatest (about 52 bp) on the one-year

CDS spread, with the two-year tenor increasing by about half as much (about 27 bp), and

longer tenors exhibiting even lower sensitivities.

Second, let us consider the spillover effects from changes in the German (DEU) expected

probability of default on those of the most troubled borrowers: the PIIGS (Portugal,

Ireland, Italy, Greece, Spain). These effects, expressed by the cumpdfDEU coefficient in

the respective borrowers’ equations, are displayed in Table 8. These effects are significant

for three of the five borrowers, positive for Ireland and Italy but negative and significant for

Greece. Thus, there is evidence for spillovers between the expected probability of default

of the most creditworthy borrower, Germany, and the CDS spreads of the most troubled

borrowers.

Third, we consider the opposite effects: those gauging the impact of changes in the

expected probability of default among the PIIGS on German CDS spreads. We do this

for both the five PIIGS and the three least creditworthy at the time: Greece, Ireland

and Portugal. We compute the linear combination of the coefficients of these borrowers’

cumpdft−1 on German CDS spreads, in point and interval form. For the full set of five

PIIGS, that summary coefficient is −0.0617 with a standard error of 0.0313 and p-val of

0.049, suggesting that a parallel increase in all PIIGS’ expected probability of default would

be expected to lower German spreads. However, when we consider only Greece, Ireland,

and Portugal, the summary coefficient is 0.0363 with a standard error of 0.0143 and p-val

of 0.011, suggesting that increases in the expected probability of default of those borrowers

would be associated with higher German CDS spreads.

6These effects are estimated so precisely that the confidence interval bands are not visible in the figure.
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3.4 Estimation for subperiods with ex ante forecasts

In this section, we report the results for three forecasting exercises. In the first exercise

we reestimate the model over the first eight months (January–August 2009) and compute

static forecasts through the following month (trading days 1 September–2 October 2009).

In the second, we reestimate the model over the first 16 months, with the sample ending

on 30 April 2010, with forecasts performed for 3 May–2 June 2010. Finally, we reestimate

the model for the first 23 months, ending on 26 November 2010 and forecasting for 29

November–29 December 2010.

For each of these three estimation periods, we compute four forecast statistics for each

tenor and borrower: RMSE, the root mean square error of forecast; MAE, the mean

absolute error of forecast; MAPE, the mean absolute percentage error of forecast; and

Theil’s U statistic. These statistics are computed for every tenor and borrower. We focus

on the five PIIGS borrowers (Portugal, Ireland, Italy, Greece and Spain) and Germany,

and present results for 1-, 3-, and 5-year tenors.

For the first estimation period, using only eight months of data, we present the forecast

error statistics in Table 9. In that period, covering forecasts for September 2009, it is

evident that forecasts for Greece and Ireland are much less accurate, on the basis of RMSE

or MAE, than those of the other PIIGS and Germany. This ranking does not hold for the

MAPE nor Theil’s U measures. The German RMSE is roughly constant over tenors, while

forecasts for Greece and Ireland at short tenors are much less accurate than those at longer

tenors.

For the second estimation period, in which 16 months of data are used, we present the

forecast error statistics in Table 10 relating to forecasts of May 2010. Focusing on RMSE

and MAE, the forecast errors are an order of magnitude larger than in the first period,

while scaling by MAPE or Theil’s U removes this effect. These magnitudes do not appear

to be sensitive to tenors as in the first period.

For the third estimation period, in which 23 months of data are used, we present the

forecast error statistics in Table 11 for forecasts of December 2010. The RMSE, MAE

and MAPE figures are smaller than those in the second period for the most troubled

borrowers. The forecast accuracy of German CDS spreads does not differ widely over

the three estimation periods, whereas considerable deterioration is evident in the troubled

borrowers’ forecast statistics for the second and third periods.
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4 Conclusions

This analysis of high-frequency data on the CDS spreads of sovereign borrowers illustrates

the advantages of working with more detailed information from these markets. Many

features of the data appear at the daily frequency that are masked, or difficult to estimate,

at the lower weekly or monthly frequencies considered in most empirical research. The

availability of the entire term structure of CDS quotes also allows us to consider how

short-term ‘insurance policies’ behave relative to those written for longer tenors.

Our forecasting exercise illustrates that the volatility inherent in very risky borrowers’

CDS spreads may make it very difficult to produce reasonable predictions, even for short

horizons. On the other hand, forecasting the CDS spreads of more creditworthy borrowers

is considerably more successful.
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Appendix A

The Duffie and Singleton (1999) model in case of multiple sources of risk (see Ang and

Longstaff) implies that the market value of the defaultable bond, in a no-arbitrage setting,

needs to satisfy the following conditions:

0 =
∂V

∂t
+

∂2V

∂λ∂r
ρ1σr (r, t)σ (λ, t) +

∂2V

∂ξ∂r
ρ2σr (r, t)σξ (ξ, t) (10)

+
∂2V

∂λ2
σ (λ, t)2

2
+
∂2V

∂ξ2
σξ (ξ, t)2

2
+
∂2V

∂r2
σr (r, t)2

2

+
∂V

∂λ
m∗ (λ, t) +

∂V

∂ξ
m∗ (ξ, t) +

∂V

∂r
m∗ (r, t)

− (r + γλL)V +
∂V

∂r
m∗ (r, t)− (r + ξL)V (11)

lim
λ→∞

V (λ, ξ, r, t, T )→ 0

lim
ξ→∞

V (λ, ξ, r, t, T )→ 0 (12)

lim
λ→0

V (λ, ξ, r, t, T )→ D (t, T )

lim
ξ→0

V (λ, ξ, r, t, T )→ D (t, T ) (13)

lim
r→∞

V (λ, ξ, r, t, T )→ 0

V (λ, ξ, r, T, T ) = 1.

The lower boundary condition for r is omitted since it depends on the specific process of

r. Notice that the upper boundary condition for λ → ∞ is now different from the upper

boundary condition limλ→∞ V (λ, ξ, r, t)→ R imposed to PDE 19. Using the Feynman-Kac

theorem we can deduce that PDE 10 implies

V (λ, ξ, r, t, T ) = E∗t

[
e−
∫ T
t (rτ+(γλτ+ξτ )·L)·dτ

]
.

This equation shows that, under the RMV assumption, we just need to add λτ · L to

rτ to take default risk into account. A special case is one whereby both r and λ follow

Cox-Ingersoll-Ross CIR processes in the risk-neutral world, so that

dr = ar (br − r) · dt+ σr ·
√
r · dwr (14)

dλ = a (b− λ) · dt+ σ ·
√
λ · dwλ (15)

dξ = aξ (bξ − ξ) · dt+ σξ ·
√
ξ · dwξ (16)
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with dwr · dwλ = ρ1dt and dwr · dwξ = ρ2dt. The CIR assumption leads to a convenient

closed form solution to equation 10 if we assume that r is not correlated with λ and ξ,

i.e. if ρ1 = ρ2 = 0. Closed form solutions provide understanding, are easy to compute

and make it easy to calibrate the model to market prices or to estimate and test the

model through maximum likelihood, GMM or other econometric techniques. In other

words closed form solutions for bond values make it easy to determine the values of the

parameters ar, br, σr, a, b, σ, aξ, bξ, σξ, γ such that the bond values predicted by the model

are close to the bond prices in the market.

Under the CIR assumption, the RMV assumption and if ρ1 = ρ2 = 0, PDE 10 implies

V (λ, ξ, r, t, T ) = E∗t

[
e−
∫ T
t rτ ·dτ

]
· E∗t

[
e−
∫ T
t (γλτ+ξτ )·L·dτ

]
(17)

= eA(t,T,ar,br,σr)−r·B(t,T,ar,br,σr) (18)

· eA(t,T,γa,Lγb,
√
Lγσ)−λ·γ·L·B(t,T,γa,Lγb,

√
Lγσ)

· eA(t,T,aξ,Lbξ,
√
Lσξ)−ξ·L·B(t,T,aξ,Lbξ,

√
Lσξ)

with

B (t, T, a, b, σ) =
2(eψ(T−t)−1)

(ψ+a)(eψ(T−t)−1)+2ψ

ψ =
√
a2 + 2σ2

A (t, T, a, b, σ) = ln

(
2ψe(ψ+a)(T−t)/2

(ψ+a)(eψ(T−t)−1)+2ψ

) 2ab
σ2

.

Notice that B (t, T, ar, br, σr) and B
(
t, T, a, Lb,

√
Lσ
)

here denote solutions to Riccati

equations, not bond prices. The result in formula 17 is due to the fact that, if λ and ξ

follow a CIR process, then also (γλ+ ξ)L follows a CIR process. In fact (γλ+ ξ)L (where

L is constant) by Ito’s lemma follows the process

d ((γλ+ ξ)L) = L · (γdλ+ dξ)

= L ·
(
γa (b− λ) · dt+ γσ

√
λ · dwλ + aξ (bξ − ξ) · dt+ σξ

√
ξ · dwξ

)
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Appendix B

Euler ”full truncation” discretization scheme

dr = ar (br − r) · dt+ σr ·
√
r · dwr

r (t+ dt) = r (t) + ar
(
br − r (t)+

)
· dt+ σr ·

√
r (t)+ · dwr

r (t)+ ≡Max (r (t) , 0)

dλ = a (b− λ) · dt+ σ ·
√
λ · dwλ

λ (t+ dt) = λ (t) + a
(
b− λ (t)+

)
· dt+ σ ·

√
λ (t)+ · dwλ

λ (t)+ ≡Max (λ (t) , 0)

dξ = aξ (bξ − ξ) · dt+ σξ ·
√
ξ · dwξ

ξ (t+ dt) = ξ (t) + aξ
(
bξ − ξ (t)+

)
· dt+ σξ ·

√
ξ (t)+ · dwξ

ξ (t)+ ≡Max (ξ (t) , 0)
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Appendix C

Denote with P (λ, ξ, t, Tj) the probability, calculated at the present time t, that the

debtor does not default in the time interval [t, Tj ], with Tj > t, given that the debtor has

not yet defaulted at time t. Thus P (λ, ξ, t, Tj) is the probability of survival up to time

Tj . We assume that, given that the debtor has not yet defaulted at Tj , the probability of

default in the infinitesimally short time interval [Tj , Tj + dt] is

(γλ+ ξ) · dt

Notice that the event of default in any infinitesimal interval dt is independent of the event

of survival/default in any other time interval. Thus, the probability of default in the time

interval [Tj , Tj + dt] computed at time t and given that the debtor has not yet defaulted

at t, is

P (λ, ξ, t, Tj) · (γλ+ ξ) · dt

which is the probability of surviving during [t, Tj ] times the probability of default during

[Tj , Tj + dt].

It also follows that P (λ, ξ, t, Tj + dt) is equal to the probability of surviving up to Tj
multiplied by the probability of surviving during [Tj , Tj + dt], i.e.

P (λ, ξ, t, Tj + dt) = P (λ, ξ, t, Tj) · (1− (γλ+ ξ) dt) .

We can re-write the last equation as

P (λ, ξ, t, Tj + dt)− P (λ, ξ, t, Tj)

dt
= − (γλ+ ξ)P (λ, ξ, t, Tj)

and we can take the limit of this equation for dt→ 0 to obtain

lim
dt→0

P (λ, ξ, t, Tj + dt)− P (λ, ξ, t, Tj)

dt
=
∂P (λ, ξ, t, Tj)

∂Tj
= − (γλ+ ξ)P (λ, ξ, t, Tj)

subject to P (t, t) = 1, since we assume that the debtor has not yet defaulted at t. P (t, t) =

1 because survival is certain at time t. Now the solution to

∂P (λ, ξ, t, Tj)

∂Tj
= − (γλ+ ξ)P (λ, ξ, t, Tj) s.t. P (λ, ξ, t, t) = 1

is

P (λ, ξ, t, Tj) = e−(γλ+ξ)(Tj−t).

When both λ and ξ are stochastic processes
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P (λ, ξ, t, Tj) = e

−

Tj∫
t

(γλs+ξs)ds

.

Following this logic,

P (λ, ξ, t, Tj−1)− P (λ, ξ, t, Tj) = P (λ, ξ, t, Tj−1)− P (λ, ξ, t, Tj−1) (1− (γλ+ ξ) dt)

= P (λ, ξ, t, Tj−1) (1− 1 + (γλ+ ξ) dt)

= P (λ, ξ, t, Tj−1) (γλ+ ξ) dt

P (λ, ξ, t, Tj−1) (γλ+ ξ) = −∂P (λ, ξ, t, Tj−1)

∂Tj−1

and

P (λ, ξ, t, Tj) (γλ+ ξ) = −∂P (λ, ξ, t, Tj)

∂Tj
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Appendix D

For the case we make the Recovery Face value assumption:

∂V

∂t
+ γ

∂2V

∂λ∂r
ρs (r, t) s (λ, t) +

∂2V

∂ξ∂r
ρs (r, t) s (ξ, t) + (19)

+ γ
∂2V

∂λ2
s (λ, t)2

2
+
∂2V

∂ξ2
s (ξ, t)2

2
+
∂2V

∂r2
s (r, t)2

2
(20)

+
∂V

∂λ
m∗ (λ, t) +

∂V

∂r
m∗ (r, t)− (r + λ)V + λR = 0

lim
r→∞

V (λ, r, t)→ 0 (21)

lim
r→∞

V (λ, ξ, r, t, Tj)→ 0 (22)

lim
λ→∞

V (λ, ξ, r, t, Tj)→ R

lim
λ→0

V (λ, ξ, r, t, Tj)→ B (t, T )

V (λ, ξ, r, Tj , Tj) = 1.

The conditions limr→∞ V V (λ, ξ, r, t, Tj) → 0 and V (λ, ξ, r, Tj , Tj) = 1 are the same as

for default-free bonds. The lower boundary condition for r is omitted since it depends

on the specific process of r. The condition limλ→∞ V V (λ, ξ, r, t, Tj) → R states that, as

λ→∞ immediate default will take place, so that the bond value approaches the recovery

value R. The condition limλ→0 V (λ, r, T )→ B (t, T ) states that, as λ→ 0 the bond value

approaches the value of a default-free zero coupon bond. Knowing the pricing PDE 19,

Feynman-Kac theorem tells us that, if R = 0,

V (λ, ξ, r, t, Tj) = E∗t

[
e−
∫ Tj
t (rτ+γλτ+ξτ )·dτ

]
where E∗t [..] denotes the time t conditional expectation in the risk-neutral world. This

equation suggests that, assuming R = 0, default risk causes the discount rate to increase

from r to r + λ. If ρ = 0, r , λ and ξ are independent and

P (λ, ξ, t, Tj−1)− P (λ, ξ, t, Tj) = P (λ, ξ, t, Tj−1)− P (λ, ξ, t, Tj−1) (1− (γλ+ ξ) dt)

= P (λ, ξ, t, Tj−1) (1− 1 + (γλ+ ξ) dt)

= P (λ, ξ, t, Tj−1) (γλ+ ξ) dt

P (λ, ξ, t, Tj−1) (γλ+ ξ) = −∂P (λ, ξ, t, Tj−1)

∂Tj−1
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(P (λ, ξ, t, Tj−1)− P (λ, ξ, t, Tj)) = −∂P (λ, ξ, t, Tj−1)

∂Tj−1

= −
∂
(
eA(t,Tj−1,a,b,σ)−γλ·B(t,Tj−1,a,b,σ)eA(t,Tj−1,aξ,bξ,σξ)−ξ·B(t,Tj−1,aξ,bξ,σξ)

)
∂Tj−1

=

(
−∂A (t, Tj−1, a, b, σ)

∂Tj−1
+ γλ

∂B (t, Tj−1, a, b, σ)

∂Tj−1

)
P (λ, ξ, t, Tj−1)

+

(
−
∂A (t, Tj−1, aξ, bξ, σξ)

∂Tj−1
+ ξ

∂B (t, Tj−1, aξ, bξ, σξ)

∂Tj−1

)
P (λ, ξ, t, Tj−1)

∂B (t, Tj−1, a, b, σ)

∂Tj−1
= −1

2
σ2B2 (t, Tj−1, a, b, σ)− aB (t, Tj−1, a, b, σ) + 1

∂A (t, Tj−1, a, b, σ)

∂Tj−1
= −abB (t, Tj−1, a, b, σ)

Considering annual quotations for bonds with maturity j :

sj,t = (1−R) ·
∑j

k=1D (r, t, t+ k) · (P (λ, ξ, t, t+ (k − 1))− P (λ, ξ, t, t+ k))∑j
k=1V (λ, ξ, r, t, t+ k)

it is the risk-neutral probability of default for infinitesimal period [Tk−1, Tk] given that

no default has occurred at Tk−1 where Tk ≡ t+ k

sj,t = (1−R) ·

∑j
k=1D (r, t, t+ k) ·

(
−∂P (λ,ξ,t,t+(k−1))

∂(t+(k−1))

)
∑j

k=1V (λ, ξ, r, t, t+ k)

since:

E∗t

[
λtje

−
∫ Tj
t λτ ·dτ

]
= E∗t

[
λtj · P (λ, ξ, t, Tj)

]
=

(
−∂P (λ, ξ, t, Tj−1)

∂Tj−1

)
' (P (λ, ξ, t, Tj−1)− P (λ, ξ, t, Tj))
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Table 1: Summary statistics for one-year sovereign CDS spreads

mean sd min p50 max

Austria 60.50 40.95 16.62 46.30 253.40
Belgium 55.98 30.53 13.75 50.87 136.35
Finland 14.19 11.77 3.86 7.64 56.75
France 31.24 14.53 7.29 29.92 63.61
Germany 20.16 10.60 5.55 19.97 61.63
Greece 446.13 373.20 64.15 222.89 1299.62
Ireland 215.14 127.69 91.43 164.87 654.06
Italy 100.32 48.06 20.44 103.20 241.41
Netherlands 29.98 22.32 7.78 24.39 102.31
Portugal 166.13 136.89 28.75 90.03 494.17
Spain 121.82 78.64 27.45 89.47 316.70

Note: computed from 522 daily observations for 2009–2010.
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Table 2: Summary statistics for five-year sovereign CDS spreads

mean sd min p50 max

Austria 93.76 40.68 48.92 83.07 273.00
Belgium 87.53 44.65 30.78 71.81 219.77
Finland 33.62 14.87 16.01 29.52 93.92
France 55.66 24.18 21.01 54.50 108.25
Germany 38.90 14.51 19.01 37.46 91.85
Greece 426.29 308.09 100.26 281.33 1125.81
Ireland 249.93 128.27 114.65 211.36 620.19
Italy 136.86 49.88 56.78 128.75 268.27
Netherlands 50.33 23.70 25.00 45.00 131.00
Portugal 185.90 135.40 44.57 130.67 542.17
Spain 148.82 75.48 54.90 124.23 364.20

Note: computed from 522 daily observations for 2009–2010.

Table 3: Summary statistics for one-year sovereign CDS spreads vs. Germany

mean sd min p50 max

Austria 40.33 33.70 3.98 31.79 200.93
Belgium 35.82 26.35 5.30 28.97 122.20
Finland -5.97 7.72 -24.24 -3.75 6.25
France 11.08 13.08 -10.83 5.09 49.97
Greece 425.97 372.76 55.15 175.80 1273.11
Ireland 194.98 126.67 71.30 141.01 629.15
Italy 80.16 43.36 11.45 73.96 214.61
Netherlands 9.82 14.61 -13.24 3.56 58.10
Portugal 145.97 136.43 18.22 47.40 462.02
Spain 101.66 77.61 21.73 58.42 290.58

Note: computed from 522 daily observations for 2009–2010.
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Table 4: Summary statistics for five-year sovereign CDS spreads vs. Germany

mean sd min p50 max

Austria 54.86 29.49 17.31 46.63 182.75
Belgium 48.63 35.93 9.73 29.86 161.10
Finland -5.29 7.30 -27.34 -3.64 15.60
France 16.76 16.35 -0.23 8.96 52.15
Greece 387.39 304.45 76.88 252.83 1081.95
Ireland 211.02 121.84 88.75 168.84 561.55
Italy 97.96 41.25 33.39 89.79 212.55
Netherlands 11.43 12.33 -7.36 7.64 66.30
Portugal 147.00 131.35 20.92 77.50 486.61
Spain 109.92 70.39 31.52 79.36 308.48

Note: computed from 522 daily observations for 2009–2010.

Table 5: Correlations of changes in one-year sovereign CDS spreads

dAUT dBEL dDEU dESP dFIN dFRA dGRC dIRL dITA dNLD dPRT

dAUT 1.00
dBEL 0.46 1.00
dDEU 0.26 0.42 1.00
dESP 0.31 0.56 0.40 1.00
dFIN 0.73 0.41 0.36 0.25 1.00

dFRA 0.50 0.57 0.56 0.56 0.51 1.00
dGRC 0.16 0.31 0.27 0.46 0.14 0.43 1.00
dIRL 0.32 0.46 0.49 0.51 0.31 0.46 0.42 1.00
dITA 0.50 0.56 0.37 0.83 0.39 0.61 0.50 0.52 1.00

dNLD 0.50 0.76 0.40 0.36 0.51 0.49 0.20 0.41 0.41 1.00
dPRT 0.22 0.42 0.34 0.68 0.17 0.49 0.61 0.64 0.67 0.25 1.00

Note: computed from 521 daily observations for 2009–2010.
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Table 6: Correlations of changes in five-year sovereign CDS spreads

dAUT dBEL dDEU dESP dFIN dFRA dGRC dIRL dITA dNLD dPRT

dAUT 1.00
dBEL 0.67 1.00
dDEU 0.70 0.67 1.00
dESP 0.51 0.71 0.65 1.00
dFIN 0.73 0.57 0.67 0.47 1.00

dFRA 0.68 0.74 0.80 0.71 0.67 1.00
dGRC 0.36 0.49 0.46 0.69 0.32 0.58 1.00
dIRL 0.58 0.64 0.59 0.77 0.53 0.64 0.60 1.00
dITA 0.57 0.73 0.66 0.89 0.52 0.73 0.64 0.74 1.00

dNLD 0.74 0.73 0.65 0.55 0.67 0.64 0.37 0.60 0.60 1.00
dPRT 0.42 0.62 0.56 0.86 0.38 0.66 0.78 0.76 0.80 0.46 1.00

Note: computed from 521 daily observations for 2009–2010.

Table 7: Summary statistics from SUR estimation over full sample

Cty N np RMSE R2 χ2 p-val

AUT 5210 29 5.925394 0.9797 293684.11 0.0000
BEL 5210 29 4.824921 0.9876 475299.33 0.0000
DEU 5210 29 1.959797 0.9846 376326.75 0.0000
ESP 5210 29 9.769852 0.9834 373549.23 0.0000
FIN 5210 29 1.774344 0.9872 438731.95 0.0000
FRA 5210 29 2.637656 0.9887 508030.68 0.0000
GRC 5210 29 37.78125 0.9854 365146.21 0.0000
IRL 5210 29 14.40218 0.9865 428535.26 0.0000
ITA 5210 29 8.074119 0.9746 246019.63 0.0000
NLD 5210 29 2.787547 0.9871 465464.49 0.0000
PRT 5210 29 15.7709 0.9857 404045.18 0.0000

Note: N is the number of observations per equation, while np is the number of parameters
per equation. RMSE is the root mean square error of the equation, while R2 is the equa-
tion’s R-squared value. The χ2 statistic is a test that all slope coefficients are jointly zero,
with associated p-val.
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Table 8: Effects of German cumpdft−1 on troubled borrowers’ CDS spreads

Borrower Coefficient Std. Err. p-val

Greece -5.2986 1.846 0.004
Ireland 6.3368 0.692 0.000
Italy 1.7634 0.389 0.000
Portugal 0.5656 0.761 0.457
Spain -0.3204 0.470 0.496

Note: Full-sample SUR coefficients and standard errors of cumpdfDEUt−1 on borrower’s
CDS spreads, with p-val of test for coefficient being significantly different from zero.

Table 9: Ex ante forecast statistics for 02sep2009–02oct2009

RMSE MAE MAPE Theil U

1yr DEU 1.392 1.265 12.738 0.127
1yr ESP 4.592 4.009 9.135 0.099
1yr GRC 12.624 9.550 11.659 0.139
1yr IRL 13.383 11.346 10.419 0.117
1yr ITA 6.114 4.110 14.718 0.162
1yr PRT 3.516 2.885 8.116 0.098

3yr DEU 1.585 1.326 10.245 0.109
3yr ESP 3.673 2.942 5.944 0.070
3yr GRC 8.819 6.262 6.635 0.088
3yr IRL 11.430 9.062 7.051 0.084
3yr ITA 4.647 3.212 8.080 0.099
3yr PRT 2.521 1.850 4.762 0.064

5yr DEU 1.332 1.147 6.888 0.077
5yr ESP 2.958 2.384 4.156 0.050
5yr GRC 6.405 4.716 4.382 0.059
5yr IRL 8.902 7.160 5.177 0.062
5yr ITA 2.635 2.284 4.123 0.046
5yr PRT 2.061 1.553 3.614 0.047
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Table 10: Ex ante forecast statistics for 03may2010–02jun2010

RMSE MAE MAPE Theil U

1yr DEU 1.751 1.407 5.576 0.071
1yr ESP 25.943 21.504 12.282 0.144
1yr GRC 130.089 89.547 10.528 0.146
1yr IRL 26.551 21.153 10.227 0.125
1yr ITA 20.802 15.757 10.391 0.138
1yr PRT 55.691 40.004 12.279 0.161

3yr DEU 1.919 1.498 4.906 0.065
3yr ESP 26.037 20.699 10.997 0.132
3yr GRC 113.402 73.370 9.229 0.136
3yr IRL 26.116 19.586 8.961 0.114
3yr ITA 21.337 15.855 9.713 0.130
3yr PRT 51.481 34.712 11.135 0.155

5yr DEU 2.363 1.813 4.930 0.066
5yr ESP 25.968 20.433 10.399 0.126
5yr GRC 101.315 68.868 8.932 0.127
5yr IRL 24.727 18.169 8.387 0.108
5yr ITA 22.415 16.528 9.514 0.128
5yr PRT 49.948 33.363 10.826 0.152
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Table 11: Ex ante forecast statistics for 29nov2010–29dec2010

RMSE MAE MAPE Theil U

1yr DEU 2.407 1.539 10.461 0.182
1yr ESP 19.957 18.684 8.489 0.091
1yr GRC 78.663 75.734 7.719 0.080
1yr IRL 46.129 42.167 8.403 0.093
1yr ITA 11.177 9.698 7.771 0.090
1yr PRT 29.704 28.059 8.419 0.090

3yr DEU 1.860 1.460 6.286 0.084
3yr ESP 16.675 14.257 4.940 0.058
3yr GRC 39.055 35.584 3.343 0.037
3yr IRL 32.344 24.912 4.509 0.060
3yr ITA 9.953 8.124 5.067 0.063
3yr PRT 23.624 21.039 4.780 0.054

5yr DEU 1.820 1.629 4.739 0.053
5yr ESP 15.390 12.759 4.101 0.049
5yr GRC 23.247 20.632 2.051 0.023
5yr IRL 26.813 18.724 3.206 0.047
5yr ITA 11.014 8.694 4.459 0.057
5yr PRT 20.445 17.587 3.705 0.043
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Figure 1: Correlations of changes in risky borrowers’ CDS spreads
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Figure 2: Correlations of changes in risky borrowers’ CDS spreads
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Figure 3: Moving-window estimates of CDS spread volatility
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Figure 4: Moving-window estimates of CDS spread volatility
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Figure 5: Cross-sectional estimates of CDS spread volatility
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Figure 6: Effects of cumpdf on German CDS spreads by tenor
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