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Abstract 

 

Financial correlation modeling is challenging, since financial correlations behave 

volatile and erratic. However, we build a simple stochastic volatility – stochastic 

correlation model, which fits empirical correlation properties well. In addition, the 

modeling of asset prices and the modeling of correlation is currently not unified in 

a coherent model. We integrate our model into the standard geometric Brownian 

motion (GBM) to create a unified asset price – asset correlation model. This 

model has a CAPM interpretation and replicates asset prices in reality 

significantly better that the standard GBM. We also apply a conditionally 

independent (CID) correlation approach between individual stocks in a portfolio 

approach. This portfolio approach improves asset modeling further.  
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1. Introduction and Motivation 

 

Asset prices are typically modeled with the Geometric Brownian motion 

(GBM) of the form 

 

d ln S(t) = μ dt + σ dw(t)      (1)  

  

where S(t) is the asset price, μ is the drift of S, σ is the volatility of S, and dw(t) is 

a standard Brownian motion, i.e. dt ε = dw(t) t , εt is i.i.d., in particular εt is a 

random drawing from a standardized normal distribution n~(0,1). 

 

Numerous extensions of the GBM exist. Merton (1976) adds jumps to the 

GBM and shows that if the logarithm of the percentage jump is normally 

distributed, a closed form solution for European style options exists. Cox and 

Ross (1976) create the constant elasticity of variance (CEV) model, where an 

exponential parameter α added to the asset price.  The value of α determines the 

dependence between asset price and volatility. In a pure jump extension, Madan 

et al create a variance-gamma approach, which create heavier tails and provides 

semi-analytic expressions for European style options.  

  

 Heston (1993) in a seminal model correlated the GBM with stochastic 

volatility. Numerous applications and extensions of the Heston model exist as for 

example Zhou (2001), Hagan et al (2002), Brigo and Pallacinini (2008), and 

Langnau (2009).  

 While stochastic volatility has been applied to the GBM, stochastic 

correlation is a fairly new field, which still awaits integration into a stock price 

process as the GBM. Even deterministic financial correlation approaches are not 

unified with a stock price model. Let’s briefly review the most popular correlation 

approaches in finance.  

 Some authors as Das et al (2006) or Fitch (2006) apply the Pearson 

correlation coefficient. However, the limitations of Pearson correlation approach 
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in finance are evident. First, linear dependencies as assessed in the Pearson 

approach do not appear often in finance. In addition, zero Pearson correlation 

does not necessarily mean independence. This is because only the two first 

moments are considered.  For example, Y = X2 {y≠0} will lead to a Pearson 

correlation coefficient of 0, which is arguably misleading. Furthermore, linear 

correlation measures are only natural dependence measures if the joint 

distribution of the variables is elliptical. However, only few distributions such as 

the multivariate normal distribution and the multivariate student-t distribution are 

special cases of elliptical distributions, for which linear correlation measure can 

be meaningfully interpreted.  

 A further popular correlation measure, mainly applied to default 

correlation, is the binomial correlation approach of Lucas (1995). However, the 

binomial correlation approach is a limiting case of the Pearson correlation 

approach. As a consequence, the significant shortcomings of the Pearson 

correlation approach for financial modeling apply also to the binomial correlation 

model.    

One of the most widely applied correlation approaches in finance was 

generated by Steven Heston in 1993. Heston correlates the Brownian motion of a 

stock price of equation (1) with the Brownian motion of a mean reverting 

stochastic volatility process. We will apply the Heston approach in our paper to 

correlate stochastic volatility and stochastic correlation.  

Further popular correlation approaches applied in finance are Copula 

correlations introduced by Sklar (1959) and Li (2000). A factorization of the 

copula approach leads to conditionally independent (CID) correlation modeling, 

which was introduced by Vasicek (1987), and extended by Hull et al (2005) and 

Burtschell et al (2007). We will apply the CID correlation approach in a portfolio 

extension of our model.  

Further correlation models are contagion modeling, introduced by Davis 

and Lo (2001) and Jarrow and Yu (2001). A fairly new class of correlation models 

are top down approaches, introduced by Schönbucher (2006), Hurd Kuznetsov 

(2006a and 2006b), Giesecke and Tomecek (2005) and Giesecke et al (2009). 
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For an overview of existing correlation approaches applied in finance, see 

Albanese et al (2010).  

 

 Importantly, the geometric Brownian motion and the existing correlation 

approaches are currently not unified in a consistent model. Rather, the 

correlations between one or more assets are exogenously derived and then ad 

hoc added to the Brownian motion. This is mathematically and conceptually 

unsatisfying.  

 To the best of our knowledge, there are only two papers that apply 

stochastic correlation to the GBM. One is Hull et al (2005). They model the asset 

process with a GBM and then sample the correlation from a beta distribution. 

However, their stochastic correlation is exogenously derived and does not follow 

a time dependent stochastic process. The second paper is Ma (2009). Here 

stochastic volatility and stochastic correlation processes are applied to price 

exchange rate options. However, volatility and correlation are assumed 

independent.  

Emmerich (2006) discusses mathematical properties of a stochastic 

correlation process. Duellman et al (2008) model stochastic correlation with a 

Vasicek process. However, both papers do not combine the correlation process 

with the asset process.  

Several other papers mention the term ‘stochastic correlation’ as 

Burtschell et al (2005), Burachi et al (2006) or Fonesca et al (2008). However, in 

these papers correlation is stochastically sampled from a distribution or is 

inferred from a historical price correlation matrix. The correlation does not follow 

a time dependent stochastic process with drift and noise.  

 

Our paper has three main contributions. First, we build a stochastic 

volatility – stochastic correlation model, which fits real world volatility – correlation 

relationships well. Second, we integrate our model into the geometric Brownian 

motion (GBM). This new GBM has a CAPM interpretation and improves the 

modeling of stock prices significantly. Third, we apply a portfolio approach in 
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which we correlate individual stocks with the conditionally independent (CID) 

correlation model. This portfolio approach results in a better fit of real world data 

than the modeling of individual stocks.  

 

The remaining paper is structured as follows: In section 2 we build a 

combined stochastic asset volatility – stochastic asset correlation model. In 

section 3 we apply the model to extend the GBM. In section 4 we show that our 

model can replicate the empirical asset process better than the standard GBM. 

Section 5 concludes.  

 

 

2. The Model 

 

We suggest a new, simple approach to simultaneously model stochastic 

volatility and stochastic correlation. In particular, we model 

 

1σσσ dw συ)dtb(adσ     (2)   

2
2

ρρρ dw ρ-1υ)dtb(adρ    (3) 

3
2
w2w1 dw ρ-1dwρdw     (4) 

 

Equation (2) models stochastic volatility of the market, represented by the 

S&P 500, with the Cox, Ingersoll, Ross (CIR) model. Hence we have σ : implied 

Volatility (VIX) of the S&P 500, aσ : mean reversion of σ, bσ : long term mean of σ, 

νσ : volatility of σ.  

Equation (3) models stochastic correlation between an individual stock 

and the market with a modified Jacobi process. Hence aρ : mean reversion of ρ, 

bρ : long term mean of ρ, νρ : volatility of ρ.  

 Equation (4) correlates the Brownian motion dw1 of the stochastic volatility 

process and the Brownian motion dw2 of the stochastic correlation process with 

the Heston (1993) model. Hence dw2 and dw3 are independent Brownian motions 
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and each Brownian motion is a Markov process, i.e. dw(t) and dw(t’) are 

independent, t ≠ t’. 

 

 

Real world fit 

 

From empirical data, we derive historical volatility and correlation 

properties as seen in Figure 1:  

 
Figure 1: Empirical relationship between implied volatility (VIX) of the S&P, and 
the correlation between Chevron Corp and the S&P (top-left).Time series plot of 
the empirical VIX and empirical correlation between CVX and the S&P (top-right). 
Histogram of VIX (bottom-left). Histogram of the correlation coefficient (bottom-
right). 

 

We expect that our model produces a similar positive, ‘triangular’ 

relationship between volatility σ and correlation ρ as in Figure 1 top left, since if 

ρw in equation (4) is positive, we have a positive dependency between σ and ρ. 

In addition, the volatility of correlation νρ decreases if volatility increases due to 

the term  ρ-1υ 2
ρ in equation (3).  

We calibrate the model of equations (2) to (4) using standard Maximum 

Likelihood techniques. In particular, we use 100,000 time steps for each equation 
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with dt = 0.1. To stabilize the data, we repeat this process 100 times and average 

the data. We find that our model replicates real-world volatility–correlation 

properties of Figure 1 well: 

Figure 2: Simulation results of the model of equations (2) to (4) with parameter 
values aσ=0.0104, bσ=0.0140, νσ=0.0075, aρ=0.0158, bρ=0.4249, νρ=0.0504, and 
ρw=0.7 
 
 
 
3. Application of the model 

 

We now apply our model of equations (2) to (4) to improve the geometric 

Brownian motion (GBM) of equation (1). Dropping the argument t to simplify 

notation, we model 

 

d ln Si = μi dt + σi dwi + βi ρ σ dw  (5) 

 

where Si is the asset price of entity i, μi is the drift of Si, σi is the volatility of Si, and 

βi is a positive constant. ρ is the correlation between an individual stock and the 

market, represented by the S&P 500. ρ is modeled as a stochastic process by 

equation (3). σ is the volatility of the market, represented by the VIX of the S&P 
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500, which is modeled by equation (2). The Brownian motions of ρ and σ are 

correlated via equation (4). dw is the Brownian motion of the market component.   

 

Equation (5) has a CAPM interpretation. The first two terms on the right 

side of equation (5) represent the idiosyncratic stock component. The term σ dw 

represents the systematic market risk factor, which is shared by all stocks. The 

impact magnitude of systematic component on the stock is βi ρ.   

 

 

4. Results 

 

We again use Maximum Likelihood techniques to calibrate the Geometric 

Brownian motion (GBM) of equation (1), and our approach of equations (2) to (5). 

In our approach, we model the variables ρ and σ in equation (5) with equations 

(2) to (4). We then optimize the critical parameters σi and βi, so that the absolute 

difference of standard deviation, skewness and kurtosis between the real-world 

distribution and our distribution of equation (5) is minimized.  

 

We derive the distributions for Coca Cola Corporation (KO) as seen in Fi
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Figure 3: PDF and CDF for Coca Cola Corporation (KO). Model data of 
equations (2) to (5) is derived with parameter values aσ=0.0104, bσ=0.0140, 
νσ=0.0075, aρ=0.0245, bρ=0.3136, νρ=0.0530, ρw=0.7, μi = 8.068x10-5, σi = 0.034, 
and βi = 2.1119. The time unit is daily.  
 

From Figure 3 we observe that our model of equations (2) - (5) replicates 

the market distribution of KO better than the standard GBM of equation (1). This 

is verified by standard statistics. The Chi-square goodness-of-fit test shows a p-

value of 0.8164 (chi2=5.986) between our model distribution and the empirical 

distribution, while the p-value is 0.054 (chi2=19.411) between the GBM-normal 

distribution and the empirical distribution. Our model gives similar results for 

other stocks that we tested.  

 

In addition, our model catches fat tails as seen in Figure 4.  

 

Figure 4: Tail distribution of Coca Cola Corporation (KO). Model data derived by 
equations (2) to (5) with parameter values as in Figure 3.  
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Portfolio approach 

 

As discussed, we correlate stochastic volatility of the market σ and 

stochastic correlation ρ between the market and an individual stock with 

equations (2) to (4).  

In a portfolio approach we additionally model the correlation between 

individual stocks. Correlating multiple assets can be conveniently achieved with 

the conditionally independent (CID) correlation model, introduced by Vasicek 

(1987), and extended by Hull et al (2005) and Burtschell et al (2007). Hence, we 

indirectly condition the individual stock prices Si, i=1,..,n in the portfolio on a 

common market factor σ dw as seen in equation (5). The impact of the common 

market factor on a specific stock i, is βi ρ.  

The result of the portfolio approach is displayed in Figure 5. We model the 

Dow components ATT (T), Coca Cola (KO), Disney (DIS), and Pfizer (PFE) and 

Verizon (VZ), each with equations (2) to (5) and average the outcome.  

 

 

Figure 5: PDF and CDF of a portfolio of 5 equally weighted Dow components. 
Parameter values for the volatility process, correlation process and the individual 
stock processes are in the Appendix.  
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Comparing Figures 3 and 5, we observe that the portfolio approach in 

Figure 5 results in a slightly better fit of the empirical data than modeling an 

individual stock in Figure 3. This is confirmed by standard statistics. The p-value 

increases from 0.8164 (chi2=5.986) to 0.9605 (chi2=5.560). When testing different 

portfolios and comparing the result to modeling individual stocks, we get similar 

results. The reasons for the better results of the portfolio approach are twofold. 

First, the correlation between individual stocks is applied in the portfolio approach. 

Second, differences of variance, skew and kurtosis between the individually 

modeled stocks and the empirical data are smoothed in the portfolio approach.  

 

 

Further research 

 

The basic model presented here can be extended in numerous ways. We 

can add jumps to the GBM (Merton 1976), extent the GBM to the CEV (constant 

elasticity of variance) model (Cox and Ross 1976), or test a pure jump model as 

the Variance-Gamma model (Madan et al 1998). We can test if other variables as 

bonds, commodities, exchange rates, credit spreads, economic variables, real 

estate values, weather data as temperature or precipitation etc. can be replicated 

with our suggested model or variations of the model.  

In addition, we could make the parameter ρw in equation (4), which 

correlates stochastic volatility and stochastic correlation, stochastic and 

dependent on other variables. The same applies to the other parameters as μ1 

and σ1.  We could also add a drift term to the market factor in equation (5).  

We could also use a different model to generate the volatility process and 

correlation process as the ARCH or GARCH model (Engle 1982, Bollerslev 

1986) and then correlate these processes.  

Regarding the application of the model, we may test if the model 

replicates realistic implied volatility smiles.  
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We also found a semi-quadratic relationship between asset return and 

asset correlation, i.e. correlation is high for negative returns and correlation is 

high, but to a lesser extent, for positive returns. However, this relationship  

appears to be quite instable.  

 

 

5. Concluding Summary 

 

This paper has three main contributions. First, we first build a simple but 

rigorous stochastic volatility – stochastic correlation model, in which the Brownian 

motions of the volatility process and the correlation process are correlated with 

the seminal Heston 1993 approach. This model fits empirical correlation 

properties well.  

Second, asset correlations are currently modeled exogenously and then 

ad hoc assigned to an asset price process as the Geometric Brownian motion 

(GBM). This is conceptually and mathematically unsatisfying. We apply our 

model to build a unified asset price - asset correlation model. This model has a 

CAPM interpretation and replicates asset prices in reality significantly better that 

the standard GBM. The model also captures fat tails well.  

Third, we apply a conditionally independent (CID) correlation approach 

between individual stocks in a portfolio approach. This portfolio approach 

improves asset modeling further.  

The basic model presented here can be extended in numerous ways. 
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Appendix: 

The parameter values for the model  

 

1σσσ dw συ)dtb(adσ      (2)   

2
2

ρρρ dw ρ-1υ)dt b(adρ      (3) 

3
2
w2w1 dw ρ-1dwρdw       (4)  

dw σ ρ β + dw σ +dt  μ = Sln  d iiiii     (5) 

 

for the individual stock processes Si in the portfolio approach discussed in 

section 4, displayed in Figure 5, are 

 

DIS: aσ = 0.0104, bσ = 0.0140, νσ = 0.0075, aρ = 0.0265, bρ = 0.4803, νρ = 0.0533, 

ρw =  0.7, μi = 5.9791x10-5, σi = 0.0027, and βi = 2.7308. 

 

KO: aσ = 0.0104, bσ = 0.0140, νσ = 0.0075, aρ = 0.0245, bρ = 0.3136, νρ = 0.0530, 

ρw = 0.7, μi = 8.068x10-5, σi = 0.034, and βi = 2.1119. 

 

PFE: aσ = 0.0104, bσ = 0.0140, νσ = 0.0075, aρ = 0.0262, bρ = 0.3876, νρ = 0.0528,  

ρw = 0.7, μi = -1.0949x10-4, σi = 0.023, and βi = 2.6527. 

 

T: aσ = 0.0104, bσ = 0.0140, νσ = 0.0075, aρ = 0.0231, bρ = 0.3850, νρ = 0.0491, ρw 

= 0.7, μi = -5.6201x10-4, σi = 0.031, and βi = 2.3344. 

 

VZ: aσ = 0.0104, bσ = 0.0140, νσ = 0.0075, aρ = 0.0262, bρ = 0.3876, νρ = 0.0528, 

ρw = 0.7, μi = -1.0949x10-4, σi = 0.023, and βi = 2.6527. 
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