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more than one underlying asset. Our construction is based on a two factor representation of the dynamics of

the asset log-returns. We investigate the properties of the model and introduce a multivariate generalization

of some processes which are quite common in financial applications, such as subordinated Brownian motions,

jump diffusion processes and time changed Lévy processes. Finally, we explore the issue of model calibration

for the proposed setting and illustrate its robustness on a number of numerical examples.
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1. Introduction

The aim of this paper is to introduce a simple, parsimonious and robust model for multivariate Lévy

processes with dependence between components, which can be easily implemented for financial

applications, such as the pricing of several types of basket options commonly used in the credit

and the energy derivatives markets.

The proposed model generalizes the approaches existing in the literature to any class of multi-

variate Lévy process, from subordinated Brownian motions to jump diffusion models. Further, the

model has a simple and intuitive economic interpretation. Our construction, in fact, is based on a

parsimonious two-factor linear representation of the assets (log)-returns, in the sense that it uses

a linear combination of two independent Lévy processes representing respectively the systematic

factor and the idiosyncratic shock. Consequently, dependence between assets in a given portfolio

is originated by the common component of the overall risk. As Lévy processes are invariant under

linear transformations, our approach allows to specify any one-dimensional model for each of the

components. In order to guarantee that the model still allows a calibration procedure to market

prices of traded vanilla options, which is parsimonious and independent of the factor structure

adopted for the asset (log-)returns, in this paper we also study the conditions under which depen-

dence can be separated from the behaviour of the margins. The construction put forward in this
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paper can be further applied to originate multidimensional versions of time changed Lévy pro-

cesses with dependence between components. This would allow to incorporate stochastic volatility

features which are shown to improve the performance of Lévy processes in pricing options across

different maturities (see, e.g., Carr et al., 2003, Carr and Wu, 2004 and Huang and Wu, 2004).

As the recent crisis in the financial markets has stressed even more the importance of capturing

market shocks with more refined models (compared to Brownian motions, i.e. Gaussian distribu-

tion), in the last few years, attention has been paid to the construction of multidimensional financial

models based on Lévy processes, with applications especially in the credit derivatives area; the

proliferation of complex multivariate products, such as CDOs, has in fact highlighted the need of

simple and parsimonious models describing both dependence among the underlying instruments,

and changes in their creditworthiness induced by shocks (jumps).

The idea of inducing correlation via a factor approach dates back to Vasicek (1987) for the case

of Brownian motions; the application of linear transformations has been extensively adopted in

the literature for the case of Lévy processes as well. For example, Baxter (2007) and Moosbrucker

(2006.a, 2006.b) use a factor copula approach for both time changed Brownian motions, such as

the Variance Gamma (VG) process and the Normal Inverse Gaussian process (NIG), and Jump

Diffusion (JD) processes of the Merton (Merton, 1976) and the Kou (Kou, 2002) type. The common

traits of these contributions are the choice of independent copies of the same stochastic processes

to model the margin, the systematic and the idiosyncratic processes, the same pairwise correla-

tion coefficient for all margin processes, and the fact that this correlation coefficient can only be

positive due to restrictions on the model parameters required to guarantee the existence of the

corresponding characteristic functions. More complex and richer models have been put forward by

Lindskog and McNeil (2003) for the case of Poisson processes and Semeraro (2008) and Luciano

and Semeraro (2010) for subordinated Brownian motions. In details, Lindskog and McNeil (2003)

make use of linear combinations to develop a common Poisson shock process framework to model

dependent events frequencies in the context of insurance loss modelling and credit risk modelling.

This approach is then extended in Brigo et al. (2007) to a formulation which avoids repeated

defaults at both cluster level and single name level. Semeraro (2008) and Luciano and Semeraro

(2010) generalize the approaches of Luciano and Schoutens (2006), Cont and Tankov (2004) and

Eberlein and Madan (2010), by introducing a multivariate subordinator incorporating both global

and idiosyncratic components. This construction recognizes that business time is related to trading

activity with both global and idiosyncratic parts, as supported by the empirical evidence put for-

ward by Lo andWang (2000). To further improve the richness of the correlation structure, Semeraro

(2008) and Luciano and Semeraro (2010) also use correlated Brownian motions; as pointed out by

the authors, though, this general formulation is no longer parsimonious in terms of parameters:
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the presence of a correlation matrix for the Brownian motion part of the components, in fact,

implies that the number of parameters grows with the square of the number of assets included in

the basket. The same dimensionality problem is suffered by the approach put forward by Kawai

(2009), in which the number of the components is the same as the number of the names in the

portfolio; further, the construction applies only to pure jump processes with the same variance.

Although similar in principle to the constructions put forward by Moosbrucker (2006.a, 2006.b),

Luciano and Semeraro (2010) and Brigo et al. (2007), our model presents some distinctive features.

In first place, it allows a richer correlation structure (including negative linear correlation), which

is also facilitated by the fact that the idiosyncratic shock and the systematic component can

be chosen separately one of the other. Further, our construction extends from the pure jump

setting to accommodate any type of Lévy process; in the case of jump diffusion processes, it

allows the distribution of the jump sizes to depend on the nature of the underlying shock; in the

case of subordinated Brownian motions, instead, the construction does not necessarily rely on the

law/characteristic function of the process chosen as subordinator. This is of relevance, for example,

in those cases in which the simulation of the process subordinator proves inefficient, as in the

case of the CGMY process (see, e.g., Ballotta and Kyriacou, 2011). Finally, the proposed model

is relatively parsimonious in terms of the overall number of parameters involved, as this grows

linearly with the number of assets, which facilitates its calibration to market data.

The remaining of the paper is organized as follows. In section 2, we introduce the construction

for multivariate Lévy processes, investigate the properties of the resulting model and show how,

under certain conditions, the proposed formulation can be used to build multivariate subordinated

Brownian motions and jump diffusion processes. A financial application aimed at discussing the

issue of model calibration and testing the robustness and the flexibility of the model is presented

in section 3; in this section, we also consider the pricing of spread options and illustrate a potential

application of the proposed model for recovering information on the implied correlation matrix.

Extensions to the case of time changed Lévy processes are introduced in section 4, whilst section

5 concludes.

2. Multivariate Lévy process via linear transformation

Lévy processes are characterized by independent and stationary increments; they are fully described

by their characteristic function which admits Lévy-Khintchine representation

φ (u; t) = etϕ(u), u∈R

ϕ (u) = iuα−u2σ
2

2
+

∫

R

(

eiux − 1− iux1(|x|<1)

)

Π(dx) .
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The terms in the characteristic exponent, ϕ (·), i.e. (α,σ,Π) represent the characteristic triple of

the Lévy process. The parameter α ∈ R describes the drift of the process, σ > 0 represents its

diffusion part, whilst the jumps are fully characterized by the Lévy measure Π, i.e. a positive

measure satisfying
∫

R

(

1∧ |x|2
)

Π(dx)<∞.

2.1. General framework

To construct a multivariate Lévy process with dependent components, we use the property that

these processes are invariant under linear transformations. The main result is given in the following.

Proposition 1. Let

Y (t) =







Y1 (t)
...

Yn (t)






,

and Z (t) be independent Lévy processes on a probability space (Ω,F ,P), with characteristic func-

tions φYj
(u; t), for j = 1, ..., n, and φZ (u; t) respectively. Then, for aj ∈R, j = 1, ..., n

X (t) =







X1 (t)
...

Xn (t)






=







Y1 (t)+ a1Z (t)
...

Yn (t)+ anZ (t)







is a Lévy process on Rn with characteristic function

φX (u; t) = φZ

(

n
∑

j=1

ajuj; t

)

n
∏

j=1

φYj
(uj ; t) , u∈R

n. (2.1)

The proof follows from the properties of a Lévy process (see, for example, Theorem 4.1 in Cont

and Tankov, 2004).

The following holds by construction (full proof in Appendix A.1).

Corollary 1. Let X (t) be the multivariate Lévy process introduced in Proposition 1. Then.

(i) For j =1, ..., n, the mth cumulant, cm, of the jth component of X (t) is

cm (Xj (t)) = t
[

cm (Yj (1))+ am
j cm (Z (1))

]

. (2.2)

(ii) For any j 6= l, the covariance between the jth and lth components of X (t) is

Cov (Xj (t) ,Xl (t)) = ajalVar (Z (1)) t.

The construction given in Proposition 1 offers a simple and intuitive economic interpretation as

for each margin, Xj, the process Z can be considered as the systematic part of the risk, whilst

the process Yj can be seen as capturing the idiosyncratic shock. Due to the presence of the com-

mon factor Z(t), the components of X (t) may jump together, inducing non linear dependence as

described in the following (the proof is presented in Appendix A.2).
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Corollary 2. For each t≥ 0, the multivariate Lévy process X (t) is positive associated if either

aj > 0 for j = 1, ..., n or aj < 0 for j =1, ..., n, i.e.

Cov (f (X (t)) , g (X (t)))≥ 0

for all increasing function f, g :Rn →R for which the covariance is well-defined.

In the more general case in which the coefficients aj do not have the same sign for j = 1, ..., n, the

componentsXj(t) and Xl(t), j 6= l, are pairwise negative quadrant dependent if ajal < 0. Moreover,

it follows directly from the construction of X (t) that if Y (t) is degenerate, the components of X (t)

are perfectly (linear) dependent; on the other hand, if Z(t) is degenerate, the components of X (t)

are independent.

For the case of the proposed construction, the dependence between components of the multivari-

ate Lévy process X (t) is correctly described by the pairwise linear correlation coefficient

ρXjl =Corr (Xj (t) ,Xl (t)) =
ajalVar (Z (1))

√

Var (Xj (1))
√

Var (Xl (1))
. (2.3)

Equation (2.2) implies that −1 ≤ ρXjl ≤ 1; in more details, ρXjl = 0 if and only if either ajal = 0

or Var (Z (1)) = 0, i.e. Z is degenerate and the margins are independent. Further, |ρXjl |= 1 if and

only if Y (t) is degenerate and there is no idiosyncratic factor in the margins. Finally, sign
(

ρXjl
)

=

sign (ajal) and therefore both positive and negative correlation can be accommodated.

Further, the pairwise linear correlation between the margin processes can be expressed in terms

of the correlation between each margin and the systematic component as

Corr (Xj (t) ,Z (t)) = aj

√

Var (Z (1))

Var (Xj (1))
∀j = 1, ..., n, (2.4)

implying that ρXjl =Corr (Xj (t) ,Z (t))Corr (Xl (t) ,Z (t)).

The multidimensional modelling approach put forward in this section is quite flexible as it allows

to specify any univariate process for each of the components; however, the linear combination

Y (t) + aZ (t) returns a known distribution for the process X (t) only if suitable convolution con-

ditions on the processes X,Y and Z are imposed, so that for j =1, ..., n

Xj(t)
d
= Yj(t)+ ajZ(t) (2.5)

(i.e. the equality is intended in distribution). This could be particularly convenient in the case

in which the multivariate Lévy process X(t) is used to build a model for financial assets which

is consistent with the information provided by traded derivative contracts. In this way, in fact,

the calibration of the marginal distribution to observable market data would be independent of
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the fitting of the correlation matrix, and therefore the parameters governing the idiosyncratic and

the systematic processes. These parameters would be recovered at a second stage through the

correlation matrix and the relevant restrictions imposed by the convolution (2.5). In more details,

to facilitate the convolution, we choose X(t), Y(t) and Z(t) from the same family of processes and

impose (2.5) by solving

ϕXj(u) =ϕY j(u)+ϕZ(aju) j =1,2, ..., n. (2.6)

This implies that, if m is the number of parameters describing the processes Xj(t), Yj(t) and Z(t),

and the parameters of the margin processes are given, for a known correlation matrix the fitting

of the joint distribution requires n(m+ 1) +m parameters. As shown by equation (2.3), we can

recover the m parameters describing the common process Z(t) and the n loadings aj, j =1,2, ..., n,

through the correlation matrix subject to relevant convolution conditions. The nm parameters of

the idiosyncratic process Yj(t) would then be obtained by solving equation (2.6).

Examples illustrating the case of a multivariate subordinated Brownian motions and jump dif-

fusion processes are discussed in the following sections.

2.2. Multivariate subordinated Brownian motions

A subordinated Brownian motion X = (X (t) : t≥ 0) is a Lévy process obtained by observing a

(arithmetic) Brownian motion on a time scale governed by an independent subordinator, i.e. an

increasing, positive Lévy process. Hence X(t) has general form

X (t) = θG (t)+σW (G (t)) , θ ∈R, σ > 0, (2.7)

whereW = (W (t) : t≥ 0) is a Brownian motion andG= (G (t) : t≥ 0) is a subordinator independent

of W . The resulting characteristic function is

φX (u; t) = e
tϕG

(

iuθ−u2 σ2

2

)

, u∈R,

where ϕG(·) denotes the characteristic exponent of the subordinator.

In general, the parameters of the distribution of the subordinator are chosen so that EG (t) = t,

in order to guarantee that the stochastic clock G (t) is an unbiased reflection of calendar time (see,

for example, Madan et al., 1998). The law of the increments of G (t) allows us to characterize

the resulting process. There are different methods for choosing a subordinator which is suitable

for financial modelling; one class of such processes which proves to be quite popular due to its

mathematical tractability is the family of tempered stable subordinators, which have characteristic

exponent

ϕG (u) =
α− 1

αk

[(

1− iuk

1−α

)α

− 1

]

, u∈C, (2.8)
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where k > 0 is the variance rate of G(t) and α ∈ [0,1) is the index of stability. In particular, if

α = 0, expression (2.8) is to be understood in a limiting sense and G(t) is a Gamma process so

that X(t) is a VG process (Madan and Seneta, 1990, Madan and Milne, 1991, Madan et al., 1998).

If, instead, α = 1/2, the subordinator follows an Inverse Gaussian process and X (t) is the NIG

process introduced by Barndorff-Nielsen (1995).

Constructing Lévy processes by subordination has particular economic appeal as, in first place,

empirical evidence shows that stock log-returns are Gaussian but only under trade time, rather

than standard calendar time (see, for example, Geman and Ané, 1996). Further, the time change

construction recognizes that stock prices are largely driven by news, and the time between one

piece of news and the next is random as is its impact. Finally, the representation of Lévy processes

as subordinated Brownian motions offers a high degree of mathematical tractability as, once we

operate under business time, log-returns are once again Gaussian and therefore the results derived

for the Black-Scholes model still hold.

To build the multivariate version of a subordinated Brownian motion of the form (2.7), we follow

Proposition 1 and let Yj (t) and Z (t) be independent subordinated Brownian motions chosen from

the same family of distributions. Then, X (t) is a multivariate subordinated Brownian motion with

margins of the same distribution’s class as Yj (t) and Z (t) if the convolution condition (2.5) (or

equivalently 2.6) is satisfied.

We note that in this construction dependence stems from both the subordinator and the associ-

ated Wiener process. In more details, if Yj (t) and Z (t) are obtained by subordinating respectively

a Brownian motion with drift βj ∈R and diffusion γj > 0 by an unbiased subordinator GY j, and a

Brownian motion with drift βZ ∈R and diffusion γZ > 0 by an unbiased subordinator GZ , equation

(2.5) implies that

Gj(t) =
βj

θj
GY j(t)+ aj

βZ

θj
GZ(t)

=
γ2
j

σ2
j

GY j(t)+ a2
j

γ2
Z

σ2
j

GZ(t),

where both equalities are intended in distribution. This shows that, similarly to Luciano and

Semeraro (2010), the subordinator of the margin process can be decomposed into a stochastic clock

which is common to all names in a given basket, and a time change that is specific to each asset,

capturing the idiosyncratic part of the overall trading activity. This split between a common and

an idiosyncratic component is supported also by the empirical analysis performed by Lo and Wang

(2000). As the subordinators are assumed to be unbiased, the above relation implies

θj = βj + ajβZ (2.9)

σ2
j = γ2

j + a2
jγ

2
Z . (2.10)
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If Gj, GY j, for j = 1, ..., n and GZ are tempered stable subordinators with variance rate kj > 0,

νj > 0 and νZ > 0 respectively, equations (2.6) and (2.8) further imply
{

kjθj = νZajβZ j =1, ..., n
kjσ

2
j = νZa

2
jγ

2
Z j = 1, ..., n

(2.11)

and consequently kj = νjνZ/ (νj + νZ). The subordinators, in fact, are assumed to have the same

stability index in order to guarantee that Xj(t), Yj(t) and Z(t) belong to the same family of

distributions.

Example 1 (The VG process). Let G(t) be a gamma process, i.e. a tempered stable process

with scale parameter α= 0; then X (t) is a VG process with characteristic function

φX (u; t) =

(

1− iuθk+u2σ
2

2
k

)− t
k

, u∈R.

Under the restrictions imposed by equation (2.11),X (t) is a multivariate VG process with margins’

parameters (θj, σj, kj) constructed as described above and characteristic function

φX (u; t) =



1− iβZνZ

n
∑

j=1

ajuj +
γ2
Z

2
νZ

(

n
∑

j=1

ajuj

)2




− t
νZ n
∏

j=1

(

1− iujβjνj +u2
j

γ2
j

2
νj

)− t
νj

.

The coefficient of pairwise correlation given by equation (2.3) in this case reads

ρXjl =
ajal (γ

2
Z +β2

ZνZ)
√

σ2
j + θ2jkj

√

σ2
l + θ2l kl

. (2.12)

Example 2 (The NIG process). In the case in which the tempered stable subordinator G (t)

has scale parameter α= 1/2, i.e. is an Inverse Gaussian process, then X (t) is a NIG process with

characteristic function

φX (u; t) = e
t
k

(

1−
√

1−2iuθk+u2σ2k

)

, u∈R.

Under the convolution restrictions (2.11), the margins Xj (t) are NIG processes with parameters

(θj, σj , kj) as constructed above. The resulting characteristic function of the multivariate NIG

process is

φX (u; t) = etϕ(u)

ϕ(u) =
1

νZ



1−

√

√

√

√1− 2iβZνZ

n
∑

j=1

ajuj + γ2
ZνZ

(

n
∑

j=1

ajuj

)2




+
n
∑

j=1

1

νj

(

1−
√

1− 2iujβjνj +u2
jγ

2
j νj

)

.

Equation (2.12) describes the pairwise correlation coefficient also in this case.

As both the VG and NIG are 3-parameter processes, the number of parameters required for the

joint fit, given the margins, is (4n+ 3), of which 3 + n are observed from the correlation matrix

subject to conditions (2.11), and 3n are obtained solving (2.9)-(2.10).
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2.3. Multivariate jump-diffusion (JD) process

An alternative representation of Lévy processes quite common in financial applications relies on

the observation that stock prices appear to have small continuous movements most of the time

(due, for example, to a temporary imbalance between demand and supply); sometimes though they

experience large jumps upon the arrival of important information with more than just a marginal

impact. By its very nature, important information arrives only at discrete points in time and

the jumps it causes have finite activity. A motion portraying such a dynamic is a jump-diffusion

process, which can be decomposed as the sum of a Brownian motion with drift and an independent

compound Poisson process. Hence, a Lévy process in the JD class has form

X (t) = µt+σW (t)+

N(t)
∑

k=1

ξ (k) , µ∈R, σ > 0,

where W = (W (t) : t≥ 0) is a Brownian motion, N = (N (t) : t≥ 0) is a Poisson process counting

the jumps of X and ξ (k) are i.i.d. random variables capturing the jump sizes (severities). W , N

and ξ are independent of each other.

We assume that the rate of arrival of the Poisson process is λ > 0. In this case, we say that

the process X (t) has parameters (µ,σ,λ) and jump sizes density fξ; the resulting characteristic

function is

φX (u; t) = e
t

(

iuµ−u2 σ2

2 +λ(φξ(u)−1)
)

,

φξ (u) = E
(

eiuξ
)

, u∈R.

Popular examples of JD processes used in finance are the so-called Merton process (Merton,

1976), for which the jump sizes are Gaussian, and the Kou process (Kou, 2002) in which case the

jump sizes follow an asymmetric double exponential distribution.

In order to construct the multivariate version of the JD process, we follow the same steps as

in the previous sections and let the idiosyncratic factor, Yj, and the global factor, Z, to be two

independent JD processes, respectively with parameters (βj, γj , δj) and jump sizes’ density fηj , and

(βZ , γZ , δZ) and jump sizes’ density fηZ . Further, for the convolution property (2.5) to hold, i.e.

for the process

X (t) =







X1 (t)
...

Xn (t)






=







Y1 (t)+ a1Z (t)
...

Yn (t)+ anZ (t)







to be a multivariate JD process, whose margins have parameters (µj, σj, λj) and jump sizes’ density

fξj , we require µj = βj + ajβZ , σ
2
j = γ2

j + a2
jγ

2
Z and

λj

(

φξj
(u)− 1

)

= δj
(

φηj
(u)− 1

)

+ δZ (φηZ
(aju)− 1) , u∈R. (2.13)
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The corresponding pairwise correlation coefficient is

ρXjl =
ajal (γ

2
Z + δZE (η2

Z))
√

σ2
j +λjE

(

ξ2j
)√

σ2
l +λlE (ξ2l )

. (2.14)

Thus, we note that under the proposed construction, the compound Poisson process components

are allowed to jump at different points in time. Further, the convolution conditions reported above

show the decomposition of both the continuous part of the risk and the pure jump one into their

corresponding asset specific part and the one common to the entire basket under consideration.

As the Poisson process is closed under convolution, we could further assume λj = δj + δZ for

j = 1,2, ..., n, so that equation (2.13) implies the following convolution on the distribution of the

jump sizes:

φξj
(u) =

δjφηj
(u)+ δZφηZ

(aju)

δj + δZ
, u∈R. (2.15)

The proposed construction of multivariate JD processes falls in the more general common Poisson

shock framework, reviewed in Lindskog and McNeil (2003) and further extended by Brigo et al.

(2007). In our case, we use only two different types of shock (systematic and idiosyncratic); however,

the distribution of the jump sizes depends on the nature of the underlying shock.

We note that a trivial solution to equation (2.15) can be obtained by assuming that ξj, ηj and

ajηZ are identically distributed. This is the case discussed by Moosbrucker (2006.b). However, in

the following we do not consider this alternative as it imposes the unrealistic restriction that the

jump sizes of each margin and the ones of its idiosyncratic component are identically distributed.

Therefore, we make use of the (numerical) solution of equation (2.15).

Example 3 (The Merton process). Assume that the distribution of the jump sizes is Gaus-

sian. Then, if ηj ∼N
(

ϑY j, υ
2
Y j

)

and ηZ ∼N (ϑZ , υ
2
Z), the processXj (t) = Yj (t)+ajZ (t) is a Merton

JD process with parameters (µj, σj, λj) as defined above, and jump sizes ξj ∼N
(

ϑj, υ
2
j

)

, where ϑj

and υj are the solutions of

eiuϑj−u2
υ2j
2 =

δje
iuϑY j−u2

υ2
Y j
2 + δZe

iuajϑZ−u2
a2jυ

2
Z

2

δj + δZ
, u∈R. (2.16)

The above implies

ϑj =
δjϑY j + δZajϑZ

δj + δZ
,

υ2
j =

δj(ϑ
2
Y j + υ2

Y j)+ δZa
2
j(ϑ

2
Z + υ2

Z)

δj + δZ
−ϑ2

j .

The coefficient of correlation is given by equation (2.14), with

E
(

ξ2j
)

= ϑ2
j + υ2

j , ∀j = 1, ..., n

E
(

η2
Z

)

= ϑ2
Z + υ2

Z .
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Example 4 (The Kou process). In the case of the Kou process, the jump sizes follow a double

exponential distribution with parameters (p,α+, α−), i.e. their density function is given by

pα+e−α+y1(y≥0) +(1− p)α−eα
−y1(y<0), α+, α− ∈R

++, p∈ [0,1].

Thus, if ηj, ηZ , ξj have a double exponential distribution respectively with parameters

(pY j, α
+
Y j, α

−
Y j), (pZ , α

+
Z , α

−
Z ), (pj, α

+
j , α

−
j ), then, for the convolution condition (2.15) to hold, these

parameters must satisfy the following

pj
α+
j

α+
j − iu

+(1− pj)
α−
j

α−
j + iu

=

1

δj + δZ

[

pY j

δjα
+
Y j

α+
Y j − iu

+(1− pY j)
δjα

−
Y j

α−
Y j + iu

+ pZ
δZα

+
Z

α+
Z − iaju

+(1− pZ)
δZα

−
Z

α−
Z + iaju

]

. (2.17)

The correlation coefficient is obtained from equation (2.14) for

E
(

ξ2j
)

= 2

(

pj
(

α+
j

)2 +
1− pj
(

α−
j

)2

)

, ∀j = 1, ..., n

E
(

η2
Z

)

= 2

(

pZ
(

α+
Z

)2 +
1− pZ
(

α−
Z

)2

)

.

Finally, we note that for the multivariate Kou model, the reconstruction of the margin parameters

(p,α+, α−) from the components parameters can only be performed numerically.

In the following, we consider applications of our multivariate approach to option pricing problems;

therefore, without loss of generality, we consider the case of a JD process with no drift, i.e. we set

µj = βj = βZ = 0 for j = 1, ..., n. This implies that for the joint fit, given the margins, we require

(5n+4) parameters in the case of the Merton process and (6n+5) in the case of the Kou process.

3. Multivariate asset modelling: calibration and derivative pricing

In this section we discuss how the multivariate Lévy process constructed in the previous part of

this paper can be used to set up a model of the financial market for option pricing. In particular,

we analyze the calibration of the model to market data in view of applications to the problem of

pricing multi-assets products.

To this purpose, we consider a frictionless market in which asset log-returns are modelled by

the multivariate Lévy process defined in Proposition 1, so that under any risk neutral martingale

measure P asset prices are given by

Sj(t) = Sj(0)e
(r−qj−̟j)t+Xj(t), j = 1, ..., n

where r > 0 is the risk free rate of interest, Sj(0) and qj denote respectively the spot price and the

dividend yield of the jth asset, Xj(t) is the jth component of the multivariate Lévy process, and

̟j denotes the exponential compensator of Xj(t).
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Table 1 Synopsis of market data for Ford Motor Company, Abbott Laboratories and Baxter Inter-
national Inc.

125-day correlation

VALUATION DATE ASSET S (0) q F (Ford) ABT (Abbott Lab.) BAX (Baxter)

F 5.20 0.0% 100%

30/09/2008 ABT 57.58 2.8% 25% 100%

BAX 65.67 1.5% 30% 64% 100%

F 2.00 0.0% 100%

27/02/2009 ABT 47.34 3.0% 37% 100%

BAX 50.91 1.8% 34% 83% 100%

F 7.21 0.0% 100%

30/09/2009 ABT 49.47 3.0% -22% 100%

BAX 57.02 1.7% -15% 45% 100%

Note. Correlation matrix estimated using historical log-returns of the three assets over a 125-day time window,
up to (and including) the valuation date. Source: Bloomberg.

We note that a full calibration procedure aimed at extracting the correlation coefficient as well

should also make use of derivatives written on all the assets, like for example a basket option.

However, as these products are only traded on the OTC market, the implied correlation cannot be

estimated at this stage. For this reason, in this application we use as a proxy the historical pairwise

correlation coefficient ρXjl between asset log-returns. In the final part of this section, we illustrate

how information about the correlation between assets could be potentially recovered from market

prices, avoiding in this way historical estimation.

3.1. Market data

We test the flexibility of the model by calibrating it to option prices on Ford Motor Company,

Abbott Laboratories and Baxter International Inc. We use Bloomberg quotes at three different

valuation dates, September 30, 2008, February 27, 2009 and September 30, 2009, in order to explore

the behaviour of the proposed model when fitting different correlation values. A synopsis of the

three assets is reported in Table 1. The risk free rate of interest is taken from Bloomberg as well

in correspondence of the relevant dates. Historical correlation between assets log-returns has been

estimated on a time window of 125 days up to (and including) the valuation date.

The three assets considered in this analysis are constituents of the S&P100 index, and represent

three different industries: automotive, drug manufacturers and medical instruments and supplies

respectively. Abbott Laboratories and Baxter International Inc. are part of the same healthcare

sector. Further, from Table 1 we observe that in September 2008 the three assets exhibit positive

correlation, at a level which is fairly similar between Ford and the remaining two assets, whilst it is

significantly higher between Abbott and Baxter. This date, in fact, coincides with the peak of the

financial crisis which led to the collapse of Lehman Brothers; the car industry was also experiencing

a particularly difficult period following the General Motors liquidity crisis and the sales fall also
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reported by its main competitors. Correlation values further increase in February 2009, when the

effects of the credit crisis are fully captured by the estimation procedure used in this analysis.

These observations lead us to expect the common component Z(t) to play a significant role in the

prices of Abbott Lab. and Baxter, whilst we expect it to have a smaller impact on Ford prices. The

same consideration holds especially for the September 2009 valuation date, when Ford exhibits

negative correlation with the other two assets considered in this analysis.

3.2. Model calibration

The calibration of the proposed multivariate asset model is performed in steps. In first place, we

extract the parameters of the margin processes, X(t), using the bid and ask implied volatilities of

European call options written on each asset; in more details, we minimize a weighted root mean

squared error, where the error is defined as







C̄bid −Cm if Cm < C̄bid

0 if C̄bid <Cm < C̄ask

Cm − C̄ask if Cm > C̄ask.

C̄ denotes the market quote; the weights are obtained using a procedure based on Huang and Wu

(2004). Model prices, denoted by Cm, are computed using the Fourier inversion procedures of Carr

and Madan (1999); out-of-the-money options are dealt with the time value approach.

The second step consists in the calibration of the parameters of the idiosyncratic process, Y(t),

and the systematic component, Z(t), by fitting the correlation matrix using least squares, and

imposing the relevant convolution conditions.

The calibrated parameters of the margins, the idiosyncratic components and the systematic

process are reported in Tables 2-5 for all the valuation dates considered and models analysed in this

paper. We note that the convolution conditions can only be solved numerically which, potentially,

could introduce an approximation error. In the attempt of quantifying it, in the Tables we also

report the difference between the moments of the distribution of the processes X(t), calculated

using the components parameters in conjunction with equation (2.2), and the same moments

calculated instead using the margin parameters and the exact formulae reported in Appendix B

(equations B.7-B.10) and Appendix C (equations C.1-C.4). Further, Figure 1 show the QQ plots of

the (simulated) samples of the margin process obtained by direct calibration to European vanilla

options and the same process obtained, instead, by linear combination of the idiosyncratic process

and the systematic process. In particular, in these plots we consider the case of the multivariate

VG model (similar results have been obtained for the other models presented in this paper and are

available from the authors). These results illustrate the goodness of the convolution provided by

the fitting procedure, although the accuracy of the approximation tends to deteriorate at the very
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Table 2 Calibration of the multivariate VG model.

VG MODEL

30/09/2008
MARGINS

F ABT BAX

θ -2.6871 -0.6373 -0.5286

σ 0.8537 0.2259 0.2296

k 0.0264 0.0928 0.0897

RMSE 3.75E-02 1.23E-01 1.49E-01

(w)RMSE 2.21E-03 9.94E-03 1.18E-02

IDIOSYNCRATIC PART

β -2.1117 -0.2552 -0.1467

γ 0.8120 0.1429 0.1488

ν 0.0318 0.2316 0.2137

a 1.1564 0.7678 0.7675

SYSTEMIC PART

βZ -0.4976

γZ 0.2278

νZ 0.1547

MOMENT MATCHING ERROR

EX (1) 0.00E+00 0.00E+00 0.00E+00

stdX (1) -1.34E-03 0.00E+00 -3.72E-03

γ1 (1) -3.61E-03 2.11E-15 7.77E-03

γ2 (1) -5.32E-05 -5.27E-15 -2.25E-02

CALIBRATION ERROR

RMSE 9.49E-03 1.70E-07 1.18E-07

(w)RMSE 8.81E-04 -1.17E-08 2.45E-09

CORRELATION ERROR

F -

ABT 3.05E-02 -

BAX -5.84E-04 5.47E-08 -

VALUATION DATE

27/02/2009

F ABT BAX

-6.3009 -0.8664 -0.7969

0.5354 0.1509 0.2613

0.0588 0.1555 0.0805

4.54E-02 2.72E-01 3.60E-01

4.64E-03 1.51E-02 1.61E-02

-4.9115 -0.0838 -0.1316

0.4710 0.0469 0.2311

0.0892 1.6068 0.1512

1.4550 0.8197 0.6969

-0.9547

0.1750

0.1721

0.00E+00 0.00E+00 0.00E+00

-4.62E-02 -1.08E-14 -3.80E-02

3.41E-02 6.64E-14 -1.91E-02

-6.16E-02 -2.08E-13 -5.84E-02

9.71E-09 -5.14E-08 -1.30E-08

1.17E-09 -3.61E-10 -7.81E-10

-

5.43E-08 -

1.39E-07 1.22E-07 -

30/09/2009

F ABT BAX

0.4058 -0.2283 -0.5425

0.6040 0.2352 0.2129

0.0104 0.2339 0.0944

4.78E-02 7.15E-02 1.01E-01

1.86E-03 4.09E-03 3.89E-03

0.2888 -0.1168 -0.4356

0.5788 0.1682 0.1431

0.0106 0.4570 0.1176

-0.9348 0.8903 0.8541

-0.1252

0.1846

0.4790

0.00E+00 0.00E+00 0.00E+00

-4.72E-03 -2.36E-14 -1.33E-14

-1.80E-02 1.11E-12 -1.58E-07

-1.28E-02 -4.05E-12 -8.48E-02

3.69E-09 0.00E+00 1.11E-09

9.43E-11 0.00E+00 5.45E-11

-

4.60E-07 -

-5.28E-02 -9.41E-07 -

Note. Parameters of the margins, the systemic part and the idiosyncratic components as at 30/09/2009, 27/02/2009 and
30/09/2009. Parameters of the marginal distributions (θj , σj , kj) obtained by direct calibration to market prices. Parameters
governing the idiosyncratic risk process, (βj , γj, νj , aj), and the systematic risk process, (βZ , γZ, νZ), obtained by fitting the
correlation matrix and then solving the parameters conditions given in Example 1. Moment matching error: the difference
between the exact moments provided in Appendix B (calculated using the parameters of the marginal process) and the moments
reconstructed using equation (2.2). Calibration error: difference between the errors produced by the calibration to market option
prices of the margin processes, X (t), and the linear transformation Y (t) + aZ (t). Correlation error: difference between the
model and the sample correlation.

far end of the tails. Tables 2-5 also report the error produced by the multivariate construction in

fitting the given correlation matrices. In particular, the full range of correlation values provided by

the data is captured with a satisfactory degree of accuracy.

As a further test, we re-calculate the prices of the European vanilla options using the joint

characteristic function and quantify the error against the corresponding market data, as reported

in Tables 2-5. The (weighted) root mean squared errors are very close to the ones generated by
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Table 3 Calibration of the multivariate NIG model.

NIG MODEL

30/09/2008
MARGINS

F ABT BAX

θ -2.0985 -0.3917 -0.3879

σ 0.8082 0.2206 0.2141

k 0.0175 0.0698 0.0559

RMSE 3.63E-02 1.20E-01 1.40E-01

(w)RMSE 2.11E-03 9.70E-03 1.13E-02

IDIOSYNCRATIC PART

β -1.7346 -0.1828 -0.1483

γ 0.7579 0.1507 0.1081

ν 0.0201 0.1495 0.0976

a 1.1480 0.6591 0.7559

SYSTEMIC PART

βZ -0.3170

γZ 0.2445

νZ 0.1308

MOMENT MATCHING ERROR

EX (1) 0.00E+00 0.00E+00 0.00E+00

stdX (1) -6.22E-04 0.00E+00 -2.66E-03

γ1 (1) -1.81E-04 4.44E-16 6.64E-02

γ2 (1) -2.40E-04 -1.39E-15 -1.39E-01

CALIBRATION ERROR

RMSE 3.82E-02 2.86E-01 2.95E-01

(w)RMSE 3.00E-03 2.27E-02 3.04E-02

CORRELATION ERROR

F -

ABT 1.50E-02 -

BAX 1.80E-02 -5.48E-08 -

VALUATION DATE

27/02/2009

F ABT BAX

-6.2583 -0.8635 -0.8041

0.9382 0.2350 0.2570

0.0397 0.1140 0.0881

4.25E-02 2.72E-01 3.60E-01

4.44E-03 1.50E-02 1.60E-02

-4.9265 -0.0836 -0.1328

0.8572 0.0731 0.1706

0.0580 1.1777 0.2917

1.3965 0.8178 0.7039

-0.9537

0.2731

0.1262

0.00E+00 0.00E+00 0.00E+00

-2.39E-02 -6.48E-13 -7.14E-03

3.02E-02 6.29E-12 1.23E-03

-6.35E-02 -2.36E-11 -4.23E-02

-1.85E-09 4.90E-09 -3.91E-09

-2.35E-10 1.19E-11 9.51E-10

-

6.43E-07 -

1.80E-07 4.38E-07 -

30/09/2009

F ABT BAX

0.5358 -0.2567 -0.5414

0.5968 0.2303 0.2167

0.0196 0.2536 0.0937

5.00E-02 7.15E-02 9.79E-02

1.94E-03 4.09E-03 3.76E-03

0.4072 -0.0783 -0.4024

0.5806 0.1271 0.1569

0.0207 0.8316 0.1260

-0.6866 0.9523 0.7420

-0.1874

0.2016

0.3648

0.00E+00 0.00E+00 0.00E+00

-3.18E-03 -3.35E-13 -8.07E-14

-2.61E-03 1.54E-11 -2.24E-07

-3.76E-03 -7.30E-11 -2.83E-02

4.16E-09 0.00E+00 -4.86E-11

9.68E-11 0.00E+00 3.12E-10

-

9.88E-07 -

-1.59E-02 7.42E-02 -

Note. Parameters of the margins, the systemic part and the idiosyncratic components as at 30/09/2009, 27/02/2009 and
30/09/2009. Parameters of the marginal distributions (θj , σj , kj) obtained by direct calibration to market prices. Parameters
governing the idiosyncratic risk process, (βj , γj, νj , aj), and the systematic risk process, (βZ , γZ, νZ), obtained by fitting the
correlation matrix and then solving the parameters conditions given in Example 2. Moment matching error: difference between the
exact moments provided in Appendix B (calculated using the parameters of the marginal process) and the moments reconstructed
using equation (2.2). Calibration error: difference between the errors produced by the calibration to market option prices of the
margin processes, X (t), and the linear transformation Y (t) + aZ (t). Correlation error: difference between the model and the
sample correlation.

direct calibration of the marginal distribution, which shows that any potential approximation error

introduced by the joint fitting procedure is relatively negligible for this type of application. We

note though that the higher the number of parameters in the joint distribution, the less flexible the

fitting of the multivariate model, and an initial guess which is quite close to the optimal solution

is required for the fitting procedure to converge efficiently. Finally, Figure 2 shows the volatilities

recovered by the standard Black-Scholes formula, in the case in which the input prices are generated
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Table 4 Calibration of the multivariate Merton jump diffusion model.

MERTON MODEL

VALUATION DATE

30/09/2008 27/02/2009 30/09/2009

MARGINS

F ABT BAX F ABT BAX F ABT BAX

σ 0.8232 0.2553 0.2353 0.9462 0.2193 0.2551 0.5858 0.2085 0.2219

λ 0.6969 0.1974 0.2017 2.3781 0.5619 0.5674 0.2708 0.2055 0.2186

ϑ -0.4738 -0.2600 -0.2837 -0.6313 -0.3574 -0.2644 0.0177 -0.2099 -0.3031

υ 0.2770 0.1998 0.1867 0.4650 0.2251 0.1800 0.3120 0.2772 0.1500

RMSE 5.03E-02 1.53E-01 1.46E-01 3.69E-02 2.74E-01 3.60E-01 4.67E-02 6.97E-02 9.79E-02

(w)RMSE 3.37E-03 1.23E-02 1.20E-02 3.87E-03 1.51E-02 1.60E-02 1.82E-03 3.10E-03 3.88E-03

IDIOSYNCRATIC PART

γ 0.7748 0.1751 0.1018 0.8909 0.1000 0.1960 0.5682 0.1000 0.1791

δ 0.5183 0.0187 0.0231 1.9165 0.1003 0.1057 0.1683 0.1030 0.1161

ϑY -0.5267 -0.5807 -0.3502 -0.6257 0.1445 0.0491 -0.0578 -0.2320 -0.4288

υY 0.2736 0.1252 0.2651 0.4881 0.1469 0.0100 0.3352 0.2792 0.0784

a 0.6467 0.4320 0.4936 0.8863 0.5428 0.4544 -0.5606 0.7188 0.5148

SYSTEMIC PART

γZ 0.4299 0.3595 0.2546

δZ 0.1787 0.4617 0.1025

ϑZ -0.5073 -0.7437 -0.2695

υZ 0.3062 0.3900 0.3738

MOMENT MATCHING ERROR

EX (1) 1.40E-03 -1.30E-03 -4.42E-03 2.09E-03 -3.37E-06 8.19E-04 -9.76E-04 6.04E-04 -2.27E-03

stdX (1) 5.89E-04 4.99E-03 6.38E-03 -1.74E-04 1.26E-04 -1.32E-02 1.09E-04 6.30E-05 -5.12E-03

γ1 (1) 4.16E-04 -4.23E-02 –6.42E-02 -1.41E-03 9.06E-03 9.32E-02 1.03E-02 4.41E-03 3.51E-02

γ2 (1) 1.83E-03 7.07E-02 9.96E-02 -2.24E-04 -1.98E-02 -1.76E-01 -2.02E-03 5.89E-03 -5.94E-02

CALIBRATION ERROR

RMSE 3.92E-05 6.05E-03 6.69E-04 -9.62E-06 -7.44E-05 2.63E-02 5.80E-05 -6.14E-04 -1.11E-03

(w)RMSE 3.92E-06 5.20E-04 5.97E-04 -1.80E-06 -4.99E-07 8.55E-04 2.05E-06 -3.40E-05 -8.55E-05

CORRELATION ERROR

F - - -

ABT -2.08E-04 - -3.87E-07 - 5.03E-04 -

BAX -9.11E-04 3.56E-04 - -3.56E-07 -8.68E-07 - -7.91E-04 -3.47E-04 -

Note. Parameters of the margins, the systemic part and the idiosyncratic components as at 30/09/2009, 27/02/2009 and
30/09/2009. Parameters of the marginal distributions (σj , λj , ϑj, υj) obtained by direct calibration to market prices. Parameters
governing the idiosyncratic risk process, (γj , δj, ϑY j , υY j , aj), and the systematic risk process, (γZ , δZ , ϑZ , υZ), obtained by
fitting the correlation matrix and then solving the parameters conditions given in Example 3. Moment matching error:
difference between the exact moments provided in Appendix C (calculated using the parameters of the marginal process) and
the moments reconstructed using equation (2.2). Calibration error: difference between the errors produced by the calibration to
market option prices of the margin processes, X (t), and the linear transformation Y (t)+aZ (t). Correlation error: difference
between the model and the sample correlation.

by the multidimensional VG process. The plot also reports the original bid-ask volatilities obtained

from market data for vanilla options.

We conclude by noting that, as in the set up proposed in this paper the correlation coefficient is

an explicit function of the model parameters, market consistent information on the (in general not
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Table 5 Calibration of the multivariate Kou jump diffusion model.

KOU MODEL

VALUATION DATE

30/09/2008 27/02/2009 30/09/2009

MARGINS

F ABT BAX F ABT BAX F ABT BAX

σ 0.8116 0.2549 0.2500 1.1776 0.2234 0.2794 0.5828 0.2300 0.2432

λ 0.2549 0.2000 0.2170 0.9873 0.9939 0.5105 0.3624 0.2033 0.2115

p 0.0254 0.3000 0.6184 0.0579 0.0772 0.0658 0.2385 0.4600 0.2300

α+ 21.3413 22.1345 26.9924 5.5704 19.7977 11.7134 3.5667 8.0000 22.4224

α− 2.4050 3.5001 2.7864 2.0662 4.1458 4.5614 7.3701 4.3438 4.8337

RMSE 5.11E-02 1.63E-01 1.55E-01 3.77E-02 2.71E-01 3.56E-01 4.81E-02 1.25E-01 1.25E-01

(w)RMSE 3.57E-03 1.31E-02 1.29E-02 4.51E-03 1.49E-02 1.59E-02 1.87E-03 6.66E-03 5.17E-03

IDIOSYNCRATIC PART

γ 0.7667 0.1639 0.1169 1.1446 0.1042 0.2278 0.5629 0.1216 0.2000

δ 0.0668 0.0119 0.0289 0.4967 0.5033 0.0198 0.2424 0.0833 0.0915

pY 0.0115 0.0568 0.4937 0.0100 0.9000 0.1000 0.2681 0.2185 0.2031

α+
Y 6.3406 6.4452 41.0497 1.9113 4.7301 38.6608 3.4307 4.5397 8.8803

α−

Y 1.7582 1.9443 1.8969 2.0154 5.0739 87.2172 6.3361 4.5398 4.1503

a 0.5455 0.4003 0.4530 0.9538 0.6813 0.5581 -0.5226 0.6754 0.4788

SYSTEMIC PART

γZ 0.4878 0.2900 0.2891

δZ 0.1881 0.4906 0.1200

pZ 0.1908 0.0204 0.3709

α+
Z 2.3883 6.7138 22.9985

α−

Z 2.3863 2.0884 3.2841

MOMENT MATCHING ERROR

EX (1) -3.90E-02 -1.21E-02 4.70E-03 1.96E-02 -1.47E-01 2.61E-02 -1.52E-02 1.10E-02 -5.97E-03

stdX (1) 1.37E-02 1.13E-02 -1.41E-06 -2.34E-03 -4.74E-02 -3.05E-02 0.00E+00 2.55E-05 3.62E-03

γ1 (1) -3.41E-02 -2.14E-01 -2.16E-01 -1.32E-03 -3.62E-01 2.93E-01 0.00E+00 1.20E-04 -4.84E-02

γ2 (1) -2.13E-02 -4.83E-01 1.12E-04 2.53E-03 -9.59E-01 -1.02E+00 0.00E+00 -6.71E-04 -3.02E-04

CALIBRATION ERROR

RMSE 2.56E-02 5.37E-02 6.71E-02 -6.49E-04 4.68E-01 6.07E-02 -1.35E-12 -5.20E-05 8.08E-03

(w)RMSE 1.72E-03 4.32E-03 5.75E-03 -7.79E-05 2.35E-02 2.07E-03 2.12E-12 -3.44E-06 3.83E-04

CORRELATION ERROR

F - - -

ABT 9.16E-03 - 1.06E-04 - -2.57E-04 -

BAX 0.00E+00 2.89E-08 - 6.25E-04 -2.44E-04 - 1.90E-04 -5.49E-04 -

Note. Parameters of the margins, the systemic part and the idiosyncratic components as at 30/09/2009, 27/02/2009 and
30/09/2009. Parameters of the marginal distributions (σj , λj , pj, α

+

j , α−

j ) obtained by direct calibration to market prices. Param-
eters governing the idiosyncratic risk process, (γj , δj, pY j , α

+

Y j , α
−

Y j , aj), and the systematic risk process, (γZ , δZ , pZ, α
+

Z , α
−

Z ),
obtained by fitting the correlation matrix and then solving the parameters conditions given in Example 4. Moment matching
error: difference between the exact moments provided in Appendix C (calculated using the parameters of the marginal process)
and the moments reconstructed using equation (2.2). Calibration error: difference between the errors produced by the calibration
to market option prices of the margin processes, X (t), and the linear transformation Y (t)+aZ (t). Correlation error: difference
between the model and the sample correlation.
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Table 6 Correlation between asset log-returns (X) and the common component (Z) and the idiosyncratic part
(Y).

VALUATION DATE
30/09/2008 27/02/2009 30/09/2009

VG MODEL NIG MODEL VG MODEL NIG MODEL VG MODEL NIG MODEL

Z Y Z Y Z Y Z Y Z Y Z Y
F 0.3622 0.9336 0.3628 0.9326 0.3893 0.9519 0.3893 0.9377 -0.3148 0.9573 -0.2639 0.9700

ABT 0.7713 0.6328 0.7303 0.6831 0.9504 0.3111 0.9504 0.3111 0.6987 0.7154 0.8337 0.5522

BAX 0.8265 0.5862 0.8764 0.5050 0.8733 0.6850 0.8733 0.5276 0.6440 0.7650 0.6287 0.7776

JD Merton JD Kou JD Merton JD Kou JD Merton JD Kou

Z Y Z Y Z Y Z Y Z Y Z Y
F 0.3416 0.9392 0.3485 0.9203 0.3893 0.9212 0.3899 0.9228 -0.2713 0.9623 -0.2709 0.9626

ABT 0.7313 0.6569 0.7436 0.6105 0.9504 0.3100 0.9495 0.5932 0.8090 0.5874 0.8129 0.5822

BAX 0.8763 0.4339 0.8607 0.5091 0.8733 0.5604 0.8739 0.6458 0.5558 0.8538 0.5529 0.8171

Note. These values have been obtained using equation (2.4) and the parameters of the components.

observable) common component could be recovered directly from the market correlation matrix.

The multivariate construction presented in section 2 would allow us to use this information to

observe the impact of these components on each asset through, for example, the correlation coef-

ficient (2.4). For the case of the assets considered in this study, these results are shown in Table

6. In particular, we observe the very strong impact of the systematic process on the correlation

between the log-returns of Abbott Lab. and Baxter; the role of the common factor though is not so

relevant in the case of Ford, confirming the economic considerations offered above. Further evidence

is provided by the parameters reported in Tables 2-5; for example, in the case of the VG model

specification, the systematic component explains only 13% of the total variance of Ford log-returns

in September 2008, against the 60% of the total variance of Abbot Lab. and 67% of Baxter. This

changes in February 2009 to 14% for Ford, 90% for Abbott Lab. and 62% for Baxter. In Septem-

ber 2009, the contribution of Z accounts for 10% of the total variation of Ford, and 49%-41% for

Abbott Lab. and Baxter respectively. Similar considerations hold for the other models analyzed in

this paper.

3.3. Pricing of Exotics and implied correlation

We conclude this section by considering the pricing of European style multinames products in the

market model calibrated in section 3.2. In particular, we consider the case of a spread (call) option

with payoff at maturity

(S1(T )−S2(T )−K)
+

where Sj, j = 1,2 denote the prices of Baxter and Abbott respectively.

In this example, we assume a joint VG dynamics for the log-returns of the two assets, with

parameters obtained by the joint model calibration reported in Table 2. Further, we assume that

the valuation date is 27/02/2009. These prices are compared with the ones generated under the
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Figure 1 Convolution error: recovering the VG distribution.
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Note. QQ plots of a Monte Carlo sample of the margin VG process, X(t), and the linear transformation process,

X
′(t) = Y (t) + aZ(t), for Ford, Abbott Lab. and Baxter at September 30, 2008, February 27, 2009 and September

30, 2009. Monte Carlo simulation based on 1,000,000 iterations.
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Figure 2 Recovering implied volatilities with multivariate VG processes and VG-CIR processes.
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Note. Implied volatility curve recovered from the multivariate VG and VG-CIR models. Volatility obtained by

inversion for the Black-Scholes formula in correspondence of input prices obtained using the given multivariate

processes. Parameters: Tables 2 and 7. Maturity: 11 months; valuation date: 27/02/2009.

assumption of jointly log-normal asset prices (standard model) in order to extract information

about the market consensus on asset correlations. All prices are computed using the Fourier inver-

sion method proposed by Hurd and Zhou (2009). In more details, for the case of the standard

model, we use as input the market implied volatility of each asset as extracted from vanilla option

prices obtained under the VG model in correspondence of each strike and maturity considered in

this example, and the historical correlation matrix presented in Table 1. The results are presented

in Figure 3: in panel (a), we report the mispricing generated by the standard model with respect to

the VG model; in panel (b), instead, we report the implied correlation extracted from the standard

model using as input the spread option prices obtained under the multivariate VG model.

Figure 3.(a) shows that the standard model overprices the spread option for in-the-money con-

tracts, whilst it underprices them for out-of-the-money contracts. The mispricing of in-the-money

contracts is particularly evident for short maturities. This is due to the fact that the distribution

of the spread underlying the contract has a higher variance and excess kurtosis under the standard

model than under the VG model. These tend to reduce when the strike price increases (due to

the trend of the implied volatilities of the components). In terms of implied correlation, this trans-

lates into higher values compared the historical correlation in the case of in-the-money options

and lower values for the case of out-of-the-money and deep out-of-the-money options, as shown

by Figure 3.(b). This observed “skew” pattern is consistent with the so-called correlation leverage
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Figure 3 Spread call options: multivariate VG model vs standard model. Mispricing and implied correlation.
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Note. Multivariate VG process parameters: Table 2. Standard model volatility parameters: implied volatility recovered from the
vanilla options VG prices; correlation coefficient Table 1. Valuation date: 27/02/2009. A(0) = S1(0)−S2(0). Prices obtained using
the approach of Hurd and Zhou (2009). Mispricing: difference between standard model prices and VG prices, expressed as percentage
of the VG prices. Implied correlation: recovered from the standard model with input prices set equal to the spread option prices
obtained under the VG model.

effect observed for example by Da Fonseca et al. (2007). Implied correlation and historical one are

close for at-the-money contracts (for which the mispricing is close to zero).

4. Extensions to multivariate time changed Lévy processes: a simple
setting.

The multivariate Lévy process introduced in Proposition 1 can also be used as the basis for mul-

tivariate time changed Lévy processes constructions, allowing for the introduction of stochastic

volatility features. Time changed Lévy processes represent a way to simultaneously and parsimo-

niously capture the fact that asset prices jump, return volatilities are stochastic and are correlated

to asset returns. These processes have been studied in the context of option pricing by Carr et al.

(2003), Carr and Wu, and Huang and Wu (2004) (see Appendix B).

Let V(t) be a n-dimensional time change; a multivariate time changed Lévy process B(t) can

be then obtained by evaluating each component of a n-dimensional Lévy process X(t) as given in

Proposition 1 by V(t) so that

Bj(t) =Xj (Vj(t)) j =1, ..., n.

Unlike Lévy processes, the process B(t) generates a stochastic conditional variance/covariance

matrix.

The corresponding characteristic function of the margin process is given by

φBj(u; t) =E
[

E
(

eiuXj(Vj(t))
∣

∣Vj(t)
)]

u∈R, j =1, ..., n; (4.1)
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if Vj(t) is independent of Xj(t) for j = 1, ..., n, (4.1) reduces to

φBj(u; t) = φV j (−i (ϕY j(u)+ϕZ(uaj)) ; t) j =1, ..., n. (4.2)

The generalization of the previous result to the case in which Xj(t) and Vj(t) are correlated (to

capture the so called leverage effect) can be obtained using the leverage-neutral measure of Carr

and Wu (2004).

For an illustration, we consider the simple case of a multivariate VG process (as given in section

2.2) time changed by an independent integrated CIR process (as in Carr et al., 2003), so that

Vj(t) = bj

∫ t

0

v(s)ds j =1, ..., n,

where bj > 0 for j = 1, ..., n, the (common) variance rate v(t) satisfies the stochastic differential

equation

dv(t) = κ (η− v(t))dt+λ
√

v(t)dW̄ (t),

and W̄ (t) is a standard Brownian motion independent of the base process X(t). The characteristic

function of Vj(t) is well known from standard results on affine processes (see, e.g., Filipović, 2009);

therefore (4.2) reads

φBj(u; t) = eΦj(u,t)+Ψj(u,t)v(0) j =1, ..., n,

with

Φj(u, t) =
2κη

λ2
ln





2ζj(u)e
ζj(u)+κ

2 t

(ζj(u)+κ)
(

eζj(u)t − 1
)

+2ζj(u)





Ψj(u, t) =
2ξj(u)

(

eζj(u)t − 1
)

(ζj(u)+κ)
(

eζj(u)t − 1
)

+2ζj(u)

ζj(u) =
√

κ2
j − 2λ2ξj(u)

ξj(u) = − bj
νj

ln

(

1− iuβjνj +u2
γ2
j

2
νj

)

− bj
νZ

ln

(

1− iuajβZνZ +u2
a2
jγ

2
Z

2
νZ

)

.

We note the limited dependence structure offered by the proposed construction due to the common

time change applied to the base Lévy process; a full, richer construction of multivariate time

changed Lévy processes is left to future research.

The parameters of the multivariate VG-CIR model calibrated to the market data described in

section 3.1, under the assumption of a risk neutral dynamic of the stock price

Sj(t) = Sj(0)e
(r−q)t eBj(t)

E
(

eBj(t)
) ,

are reported in Table 7. For illustration purposes, we only consider the valuation date as of

27/02/2009. The Table reports the error in fitting the correlation matrix as well as the error in
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Table 7 Calibration of the multivariate VG-CIR model.

VG-CIR MODEL

MARGINS MOMENT MATCHING ERROR

F ABT BAX F ABT BAX

θ -3.1330 -0.7165 -0.73366 EX (1) 0.00E+00 0.00E+00 0.00E+00

VG σ 1.0542 0.3296 0.3513 stdX (1) -4.31E-02 -2.94E-02 -1.58E-02

k 0.0314 0.1836 0.0927 γ1 (1) 7.15E-03 -7.07E-01 -9.79E-03

b 1.0000 0.2351 0.2220 γ2 (1) -1.98E-02 -7.03E-01 -2.80E-01

CIR λ 0.8333 0.4040 0.3926

κ 1.0993 1.0993 1.0993

η 1.1275 0.2651 0.2503 CALIBRATION ERROR

RMSE 7.63E-03 1.33E-01 7.39E-02 RMSE -8.92E-11 8.22E-13 5.15E-11

(w)RMSE 8.53E-04 8.18E-03 3.66E-03 (w)RMSE -7.55E-10 4.93E-09 2.28E-09

IDIOSYNCRATIC PART CORRELATION ERROR

β -1.8899 0.0962 -0.1144 F -
γ 0.9680 0.1849 0.2825 ABT -2.73E-07 -
ν 0.0372 2.2361 0.1727 BAX -2.18E-07 -9.97E-07 -
a 1.1932 0.7801 0.5972

SYSTEMIC PART

βZ -1.0418

γZ 0.3498

νZ 0.2000

Note. Valuation date: 27/02/2009. Parameters of marginal distributions (θj , σj , kj, λj, κ, ηj) obtained
by direct calibration to market prices (note: λj = λ

√

bj , ηj = bjη, where λ, η are the parameters of
the common time change). Remaining parameters (idiosyncratic and systematic components of the VG
process) obtained by fitting the correlation matrix subject to relevant convolution conditions. Moment
matching error: difference between the exact moments provided in Appendix B (calculated using the
parameters of the marginal process) and the moments reconstructed using equations (B.3)-(B.6) in
conjunction with equation (2.2). Correlation error: difference between the model and the sample corre-
lation. Calibration error: difference between the errors of the calibration of the margin process and the
linear combination to the market prices.

reproducing the original option prices by the multivariate VG-CIR model. Comparison with Table

2 shows the improved performance of the time changed VG construction due to the additional

stochastic volatility features. Further evidence is provided in Figure 2, where we plot the implied

volatilities generated by the multidimensional VG-CIR process and compare them with the ones

obtained previously from the multivariate VG model. In particular, we note that the implied

volatility induced by the VG-CIR construction provides a better fit especially for the more liquid

contracts, as expected (see, e.g., Carr et al., 2003 and Huang and Wu, 2004).

The multivariate construction for time changed Lévy processes introduced in this section can be

further improved to a setting in which stochastic volatility can be generated separately from the

diffusion and the jump component of X(t), by applying individual time changes as in Huang and

Wu (2004). Hence, the multidimensional model proposed in this section could be considered as an

alternative to the Wishart processes approach introduced for example by Gourieroux (2006), Da

Fonseca et al. (2007) (2007) and further extended by Leippold and Trojani (2008).
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5. Conclusions

In this note we studied an alternative construction of multivariate Lévy processes which keeps the

appealing properties of the approaches existing in the literature and, at the same time, addresses

their limitations. The relevance of this topic arises from the increasing need of more sophisticated

models as highlighted by the recent financial crisis. The proposed model could also be used as a

platform to construct multivariate time changed Lévy processes, allowing for a richer stochastic

volatility structure.

The empirical analysis presented in this paper shows that our approach is flexible enough to

accommodate the full range of possible linear dependence, from negative to positive correlation,

from complete linear dependence to independence, but, at the same time, it is relatively parsimo-

nious in terms of number of parameters involved, as this grows linearly with the number of names

in the basket.

Finally, in the applications discussed in this paper, we assume that the margins and the overall

multivariate process follow the same distribution; this is necessary in order to maintain the cali-

bration of the margin processes separated from the fitting of the correlation structure. However,

Proposition 1 holds for any Lévy process and therefore it allows to relax this assumption.
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Appendix A: Proof of statements in Section 2

A.1. Proof of Corollary 1

Proof.

(i) It follows from direct differentiation of the characteristic function of the components of X(t) and from

the fact that Lévy processes have an infinitely divisible distribution.

(ii) It follows from the assumption that the processY(t) has independent components and it is independent

of Z(t).

A.2. Proof of Corollary 2

Proof. Let f, g :Rn →R be increasing functions for which the covariances are defined. Then

Cov (f (X (t)) , g (X (t))|Z)≥ 0

due to the association of Y (t). Further, for any increasing function f ,

E (f (X (t))|Z = z) =E (f (Y (t)+ az))

is an increasing function of z if aj > 0 for j = 1,2, ..., n, which implies

Cov (E (f (X (t))|Z) ,E (g (X (t))|Z))≥ 0

as Z(t) is positive associated. On the other hand, if aj < 0 for all j =1,2, ..., n, we note

Cov (E (f (X (t))|Z) ,E (g (X (t))|Z)) =Cov (−E (f (X (t))|Z) ,−E (g (X (t))|Z))

which is non-negative as well. Therefore,

Cov (f (X (t)) , g (X (t))) = E (Cov (f (X (t)) , g (X (t))|Z))

+Cov (E (f (X (t))|Z) ,E (g (X (t))|Z))≥ 0

as required (see for example Müller and Stoyan, 2002).

Appendix B: Time changed Lévy processes

Time changed Lévy processes are obtained by observing a Lévy process X(t) on a time scale governed by a

non-negative, non-decreasing stochastic process V (t). X(t) is the base process, V (t) is the time change, or

stochastic clock, and the resulting process is B(t) =X (V (t)). The corresponding characteristic function is

given by

φB(u; t) =E
[

E
(

eiuX(V (t))
∣

∣V (t)
)]

u∈R, (B.1)

which, under the assumption of a stochastic clock independent of the base process, can be rewritten as

φB(u; t) = φV (−i (ϕX(u)) ; t) (B.2)
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In this case, it follows by direct differentiation of the (log of the) characteristic function of B(t) that

EB (t) = E (X(1))E (V (t)) , (B.3)

Var (B (t)) = Var (X (1))E (V (t))+E
2 (X(1))Var (V (t)) , (B.4)

c3(B(t)) = c3 (X(1))E (V (t))+ 3E (X(1))Var (X(1))Var (V (t)) +E
3 (X(1)) c3 (V (t)) , (B.5)

c4(B(t)) = c4(X(1))E (V (t))+ 4c3(X(1))E (X(1))Var (V (t))+ 3Var2 (X(1))Var (V (t))

+6E2 (X(1))Var (X(1)) c3 (V (t)) +E
4 (X(1)) c4 (V (t)) , (B.6)

from which the indices of skewness, γ1(t), and excess kurtosis, γ2(t), follow.

In the special case in which the base process is a Brownian motion with drift of the form X(t) = θt+σW (t)

for θ ∈R, σ > 0, then (B.3)-(B.6) reduce to (see, for example, Ané and Geman, 2000)

EB (t) = θE (V (t)) , (B.7)

Var (B (t)) = σ2
E (V (t)) + θ2Var (V (t)) , (B.8)

c3(B(t)) = 3θσ2
Var (V (t)) + θ3c3 (V (t)) , (B.9)

c4(B(t)) = θ4c4 (V (t))+ 6θ2σ2c3 (V (t)) + 3σ4
Var (V (t)) . (B.10)

Other Lévy processes with known time changed Brownian motion representation are the CGMY (Carr et

al., 2002) and the Meixner process (see Madan and Yor, 2008).

Appendix C: Cumulants of a JD process

By differentiation of the characteristic exponent, it follows

EX (t) = (µ+λE (ξ)) t, (C.1)

Var (X (t)) =
(

σ2 +λE
(

ξ2
))

t, (C.2)

c3(X(t)) = λE
(

ξ3
)

t, (C.3)

c4(X(t)) = λE
(

ξ4
)

t. (C.4)
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Carr, P. and L. Wu, 2004, Time-changed Lévy processes and option pricing, Journal of Financial Economics, 71,
113-141.

Cont, R. and P. Tankov, 2004, Financial modelling with Jump Processes. Chapman & Hall/CRC Press.

Eberlein, E. and D. B. Madan, 2009, On correlating Lévy processes, Journal of Risk, 13, 3-16.
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