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ABSTRACT 

This paper tests for the existence of speculative bubbles in five key commodities – crude oil, 
gold, silver, aluminum and copper – over the last decade or so, focusing on possible bubble 
characteristics around the time of the financial crisis.  We utilize the new methodology of 
Phillips, Wu and Yu (2011, International Economic Review 52, 210-226), and Phillips and 
Yu (2011, Quantitative Economics 2, 455-491) that allows for date-stamping the origination 
and collapse of bubbles, but in a form where critical values are made robust to allow for 
possibly different data spans and sampling frequencies. We find evidence of bubble behavior 
in the copper, gold and silver markets in the first half of 2006. Results are less conclusive for 
the aluminum market. We fail to find convincing evidence for a 2007-08 crude oil bubble. 
 
 
1. Introduction 
 
    Recent, sharp increases in commodity prices, including increases in the prices of crude oil, 

industrial metals and precious metals, have led to suggestions that price rises may have been 

driven by non-fundamentally-based speculation. Phillips and Yu (PY, 2011) have pointed to 

some commodity prices having exhibited bubble-type behavior – see also Gilbert (2010b), 

and Shi and Avora (2012). The Commodity Futures Trading Commission (CFTC), which is 

the U.S. futures market regulator, defines a speculative bubble as1 
   

 “. . . a rapid run-up in prices caused by excessive buying that is unrelated to any of the 

basic, underlying factors affecting the supply or demand for a commodity or other asset. 

Speculative bubbles are usually associated with a “bandwagon” effect in which speculators 

rush to buy the commodity (in the case of futures, “to take positions”) before the price trend 

                                                 
1 http://www.cftc.gov/ConsumerProtection/EducationCenter/CFTCGlossary/glossary_s 
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ends, and an even greater rush to sell the commodity (unwind positions) when prices 

reverse” 
  

While there is awareness among market participants that institutional investors including 

hedge funds and commodity index traders play an important role in determining commodity 

futures prices, it is not at all clear whether their activities lack a fundamental basis in supply 

and demand, or whether they are instead simply part of a mechanism whereby information on 

market fundamentals becomes impounded in competitively determined prices. There is 

currently little consensus on this matter, either among practitioners or academics. In the 

former group, Masters (2008, 2010) and Soros (2008) have argued that speculative positions 

taken by an influx of new traders into oil and other commodity futures markets, viewing 

commodities purely as an asset class, were essential in explaining the run-up in prices seen in 

the last decade. This process has been described as the increased financialization of 

commodities markets (see, e.g., Mayer, 2010; Irwin and Sanders, 2011; Tang and Xiong, 

2011; Fattouh et al. 2012). That such financialization has changed the composition of such 

markets is undisputed; for example, Tang and Xiong quote a CFTC staff report2 that 

estimated the total value of various commodity index-related instruments purchased by 

institutional investors to have increased from around $15 billion in 2003 to over $200 billion 

in mid-2008.  Drawing on the same report, Gilbert (2010b) notes that this translates into 

index fund share having grown, as measured in June 2008, to over a one-quarter of total 

market open interest in crude oil futures, over two-fifths in copper, and over a fifth in gold 

and silver. Apart from a sharp decline during the recent slowdown, the rise in index 

investment has continued unabated, with current values easily surpassing previous highs.  

Much more controversial is whether increased financialization has been the major driver of 

commodity futures prices over the last decade, whether it has created “excessive speculation” 

manifesting itself as bubbles, or whether the large positions taken by such investors have led 

to self-fulfilling movements in prices that represent “market manipulation”. Certainly, such 

views have been invoked to underpin a number of recent bills in the U.S. Congress that seek 

to limit index fund speculation in commodity futures; for example the 2010 Dodd-Frank Wall 

Street Reform and Consumer Protection Act granted the CFTC board the power to set 

aggregate speculative position limits on futures and swap positions in all (non-exempt) U.S. 

physical commodity markets. The academic support for a key role having been played by 

increased financialization in commodity futures markets is mixed.  Some support has been 

                                                 
2 CFTC, 2008. Staff report on commodity swap dealers & index traders with commission recommendations. 
(http://cftc.gov/stellent/groups/public/@newsroom/documents/file/cftcstaffreportsonswapdealers09.pdf) 
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provided by Gilbert (2010a,b), Silvenoinen and Thorp (2010), Mayer (2011), and Tang and 

Xiong (2011).  However, Sanders and Irwin (2010, 2011), Stoll and Whaley (2010, 2011), 

and Fattouh et al. (2012) find the evidence much less compelling. 

      In parallel with approaches based on financialization, there has been a developing 

literature that emphasizes fundamental supply and demand factors in a macroeconomic 

context, setting commodity price movements explicitly within the global economic 

environment.  Hamilton (2009) provides an explanation of the 2007-08 oil price spike in 

terms of the growth in world real gross domestic product (GDP), an increase in consumption 

notably from China and other developing nations, and a stagnation of global oil production 

between 2005 and 2007; the fall in mid-2008 being accounted for by the global economic 

downturn.  Harris et al. (2009) take a similar view but also relate the oil price to U.S. 

monetary policy, and envisage there being commonality in its impact on all commodities. 

Using the structural approach of Kilian (2009) that offers a basis for disentangling the effects 

of oil price fluctuations, Kilian and Murphy (2011) find that, while speculation could have 

played a role in earlier oil price shocks, the run-up in the price of oil between 2003 and mid-

2008 was not explained by unexpectedly diminishing oil supplies or speculative demand but 

by the fluctuations in the flow demand for oil driven by the global business cycle.  Caballero 

et al. (2008a,b) proposed a general equilibrium model to enucleate the recent financial crisis, 

linking global financial asset scarcity, global imbalances, the rise in U.S. real estate prices, 

the subsequent subprime crisis and spike in commodity prices. Essential to the model is a 

pattern of bubble creation followed by collapse that migrates from sector to sector.  It predicts 

that, after the beginning of the U.S. subprime crisis and the ensuing global liquidity and credit 

crunch (Brunnermeier, 2009), there was a period where investors in a “flight-to-quality” 

reaction looked for alternative stores of value in some commodity markets, creating bubbles 

there that were later destroyed as economic growth slowed. Using powerful tests they 

developed, PY claim to have corroborated this migrating bubble and crash hypothesis. Using 

the same data, Figuerola-Ferretti, Gilbert and McCrorie (FGM, 2012) offer more qualified 

support when considering tests using the same methodology that were made robust in relation 

to changes to data span and sampling frequency. 

      The purpose of this paper is to use robust statistical tests to analyze the time series 

properties of five key commodities over the last decade or so, focusing on possible bubble 

characteristics around the time of the financial crisis. Our primary aim is to produce an 

evidence base that we can use to help interpret recent commodity price behavior in the 

context of some of the competing theories and explanations discussed above. Our analysis 
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will be of potential relevance to policymakers precisely because these competing theories 

have different policy implications.  If increased financialization really has led to a speculative 

bubble that interferes with the price discovery and risk-shifting functioning of futures 

markets, say by inducing suppliers to over-produce and/or reducing the effectiveness of 

hedging, the case for legislation to limit speculation would be strengthened, even taking 

account of the costs imposed on some market participants. On the other hand, if the run-up 

seen in commodity prices over the last decade primarily reflected supply and demand 

fundamentals, limits on speculation would be less justified and might even harm the efficient 

functioning of markets. 

     We consider five commodities – crude oil, gold, silver, copper and aluminum – as being 

indicative of the energy and metals markets,3 and consider a data span of twelve years, 

beginning just after the so-called “Internet Bubble” in the NASDAQ index in the late 1990’s. 

We choose this starting point because it marks the beginning of the Caballero et al. (2008a) 

account of the recent financial crisis. The commodities can be divided into three distinct 

types: oil, precious metals and industrial metals. Gold is a precious metal widely 

acknowledged to be a “store of value”, especially in times of crisis; its price increased nearly 

fourfold over the 12-year period analyzed.  The run-up in prices took place especially after 

mid-2003, showing a small spike in mid-2008, and reaching a high of $1920 in September 

2011. Silver, sometimes known as “poor man’s gold”, offers a useful comparison with gold 

because, although traditionally weaker as a store of value, is still acknowledged to be an 

investment asset. Its price over the sample period increased nearly fivefold and, like gold, 

showed a run-up especially from mid-2003; its run-up in 2006, however, was more marked, 

and its spike in 2008 more pronounced.  Copper and aluminum are both industrially 

consumed raw materials, with the crucial difference that China is a major importer of copper, 

but does not import aluminum. Over the sample period, the price of copper increased more 

than fourfold and the price of aluminum more than doubled.  Indeed copper, which averaged 

under $1,700/ton over 2000-03, was trading at over $3,000/ton by the end of 2004, and over 

$8,000/ton in May 2006 and again in 2008.  Aluminum showed a similar pattern, peaking in 

2006 and again in 2008, but unlike copper, its post-2008 prices have still to reach new highs.  

Last but not least, crude oil is both an industrial commodity used as an input into other 

activities, and is directly consumed, as petroleum, by final consumers.  Its price has risen 

more than six-fold over the sample period.  Specifically, crude oil prices, which had averaged 
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around $19/barrel in the 1990’s, rose to over $30/barrel by the end of 2003, over $50/barrel in 

2005 and peaked at over $140/barrel in 2008. 

     While we concentrate on testing for possible bubble characteristics, we also note two 

important identification issues that limit our ability to attribute the source of a bubble to 

individual characteristics that underlie a particular series. Certainly, bubbles can result from 

the type of speculative behavior discussed above where the basis of pricing departs from 

fundamental supply and demand considerations – this is a bubble of type embodied in the 

CFTC definition given above. It is also possible, however, that a bubble in one of the 

fundamental factors driving the price can manifest itself in the observed series. For example, 

a crude oil bubble might transmit itself through transport and other costs to generate bubbles 

in the prices of other commodities. Another consideration is that rational bubbles can emerge 

purely as endogenous responses to the fundamentals that drive asset prices even in the 

simplest of underlying structural models (see Branch and Evans, 2011). For these reasons, 

evidence derived solely from price changes can never be sufficient to allow us to infer that a 

particular price pattern, such as a bubble, is based on non-fundamental factors.  This does not, 

however, imply that our approach is without meaning; its power derives from the evidence 

base that we can create from being able to date-stamp the origination and collapse of bubbles 

in a way that is robust to data span and sampling frequency. This allows us to offer strong 

conclusions on what theories and explanations are corroborated by or rejected by the data.  

For example, we can rigorously test whether the 2007-08 oil price spike was a bubble; 

whether the commodities showed differences in their time series characteristics that would 

offer evidence against the primacy of an explanation based on increased financialization; and 

whether the data are consistent with a fundamentals-based explanation, say involving the 

demand for raw materials from China and the developing world.  We are also able to test the 

predictions of the Caballero et al. (2008a,b) sequential model they proposed to explain the 

financial crisis. 

      In order to test for possible bubble behavior, we apply the methodology proposed by 

PWY and PY that allows for date-stamping the origination and collapse of bubbles, but in a 

form where critical values are made robust to allow for possibly different data spans and 

sampling frequencies. The method is statistically rigorous, being based on earlier work by 

Phillips and Magdalinos (PM, 2007a,b) which offered a solution to the longstanding problem 

                                                                                                                                                        
3 In a companion paper currently in progress, we are considering commodity price behavior in agricultural 
markets over the same period. 
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of constructing appropriate distribution theory in the context of explosive time series;4 

however in recent work, FGM have found that the tests are sometimes not robust to the 

different data spans and sampling frequencies we expect to encounter with financial data.  

Accordingly, we will base our empirical analysis on the method that we used to robustify the 

PWY/PY methodology, which is essentially provides a more careful calibration of critical 

values. 

      The plan of the paper is as follows.  In Section 2, we briefly outline the basis of the PWY-

PY testing methodology and summarize our approach to providing robust critical values for 

data with respect to different data spans and sampling frequencies, even for a given time 

series.  Section 3 describes the data sets used and presents our empirical findings for crude 

oil, gold, silver, copper and aluminum price data.  Section 4 provides an interpretation of this 

evidence.  Section 5 concludes.  Appendix A provides the tables and graphs that underpin the 

main text, and Appendix B contains some details on the calibration of critical values and on 

the power of the tests. 

 

2. Testing for financial bubbles: the PWY-PY recursive method and the construction 

of robust critical values 

 

     In this section, we first offer essential background on testing for bubbles, outline the 

PWY-PY testing methodology and then describe FGM’s modification to make the method 

robust to different data spans and sampling frequencies.  Finally, we discuss how to construct 

robust critical values. 

 

2.1.  Essential background on testing for bubbles 

     Most tests for bubbles are based on the equation5 

tititt

i

i f
t BUDE

r
P 












 




 )(

1

1

0

,        (1) 

                                                 
4 The essential problem addressed by PM, extant since the celebrated paper by Anderson (1959), is that in the 
standard test for random walk behavior against autoregressive alternatives, no invariance principle applies under 
explosivity, meaning that any limiting distribution would depend on the actual (unknown) distribution of the 
disturbances. PM provided an invariance principle for a class of process, called a mildly explosive process 
(defined here in Section 2), that is wide enough to have empirical relevance.  This theory helped pave the way 
for the tests for bubbles recently constructed by PWY and PY. 
5 See Gürkaynak (2008) and Phillips, Wu and Yu (2011) for up-to-date bibliographies on empirical tests for 
bubbles.  Branch and Evans (2011) provide a reasonably complete bibliography for the rational bubble 
literature. 
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where tP  is the after-dividend price of an asset (i.e. the stock price), tD  is the payoff 

received from the asset (i.e. the dividend), tU  is the unobservable fundamental and fr  is the 

risk-free interest rate. tt BP   is the market fundamental, and tB  defines the bubble 

component, which is assumed to satisfy the (explosive) property 

tftt BrBE )1()( 1  .          (2) 

     In the absence of bubbles )0( tB , the degree of non-stationarity of the asset price is 

controlled by the nature of the dividend series and the unobservable fundamentals, and so if, 

say, tD  is an I(1) process and tU  is either an I(1) or I(0) process, then the asset price is at 

most an I(1) process, although if tU  exhibits more than I(1) non-stationarity, this will 

manifest itself in the stock price. Given (2), if the tU  are at most I(1) processes, then 

explosive behavior in the asset price might appear to provide corroboratory evidence of 

bubble behavior. 

      The problem, however, is subtler if the bubbles are periodically collapsing. Evans (1991) 

proposed a model where (2) continues to hold, but bubbles below a certain threshold grow at 

a constant lower rate than they do above the threshold where there is an assumed non-zero 

probability of collapse to a non-zero value before the process resumes its path as before. In a 

simulation experiment, Evans showed that under this regime, the conventional co-integration 

test of Diba and Grossman (1988), which relies on a right-tailed unit root test, was not 

powerful in detecting explosive bubbles.  Intuitively, when a time series is viewed across 

such episodes, the observed path seen as a whole can appear like an I(1) process or even a 

stationary process, suggesting that standard tests for explosivity based on the whole sample 

could have low power.  This intuition provides the motivation to consider tests that are 

recursive and indeed PWY established in the context of Evans’s model that such methods 

could offer the basis of a powerful test for periodically collapsing bubbles. While PWY in 

fact provided three tests for bubble behavior, we are primarily interested in their third test, 

subsequently modified by PY, that involves sequential testing based on forward recursive 

regressions and allows for date-stamping the origination and collapse of a bubble.   

 
2.2. The PWY-PY recursive test: a statistical method to estimate the origination and 

collapse of bubbles 

 

     The PY regression model is the following autoregressive (AR) model that is estimated on 

the basis of a sample of size n by ordinary least squares (OLS): 
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ttt xx   1   t  ~ i.i.d.(0, 2 )  (t = 1, . . . , n)     (3) 

where we assume that 0x  is a fixed initial value, and  ,   and )0(    are unknown 

parameters.6 The null hypothesis 1:0 H  is tested against a right-sided alternative that 

entails (possibly localized) mild explosivity, where the autoregressive parameter is a function 

of sample size such that nn kc 1 , c is a constant, and Nnnk )(  is a deterministic 

sequence such that nk  and 0nkn . This set-up entails a smoother passage away 

from the null than is implied by the local-to-unity model introduced by Phillips (1987) and 

Chan and Wei (1987): see PM (2007a, b) for specific details.  PY consider the following data 

generation process (DGP) under the alternative hypothesis7 

)(1)or(1 11 fetnfett txttxx          

      }{1}{1
1 ftf

t

k k ttX
f


    

      (t = 1, . . . , n)     (4) 

 ncn /1  ,   c > 0,   )1,0( .          (5) 

Under the conditions on c and  , the autoregressive parameter n  is greater than unity, and 

the model has what PM (2007a) call a mildly-integrated root (on the explosive side of unity).  

The system exhibits unit root behavior until e , mildly explosive behavior between e  and 

f , and then resumes its unit root behavior at f , with the process moving to a different 

level, 
f

X  , of re-initialization upon the collapse of the bubble. Generally, provided the tests 

have sufficient power when directed against (4) and (5), tests that reject the null hypothesis of 

(global) martingale behavior can be interpreted as providing corroboratory evidence for this 

alternative. 

     The regression in the first recursion uses ][ 00 rn  observations for some initially chosen 

fraction 0r  of the total sample, where [.] denotes the integer part of its argument. Subsequent 

regressions use this originating data set supplemented successively, giving a sample size of 

][nr  for each sample fraction r ( 10  rr ).  The corresponding coefficient test and 

Dickey-Fuller t-statistic, denoted by 
rDF and t

rDF , are given by  

                                                 
6 PM more generally allow the initial value to be drawn from a distribution in such a way that the process is 

initialized at some )(0 np kox   independent of the σ-algebra generated by the disturbances n ,...,1 .  The 

independent, identically distributed (i.i.d.) assumption can also be relaxed, say to allow for errors that are 
martingale differences.      
7 The process is formulated with a zero intercept since a non-zero intercept would produce a dominating 
deterministic component of an empirically unrealistic explosive form. See pp. 5-6 of Phillips and Yu (2009). 
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where ̂  is the OLS estimate of   based on the first ][nr  observations, 
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
1DF  and tDF1  are the usual full-sample test statistics. 

      To test explicitly for the origination and collapse of a bubble, PWY and PY use forward 

recursive regressions with the estimate ]ˆ[ˆ ee rn , where 
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where 
n

cv  and df

n
cv  are prescribed deterministic approximations (in a sense to be made 

clear in Section 2.4 below) to the right-sided %100 n  critical values of the finite-sample 

distributions of the 
rDF and t

rDF  statistics based on ][nss   observations, and n  is the 

size of the (one-sided) test.  Conditional on a bubble origination date er̂  having been found, 

the collapse is dated by ]ˆ[ˆ ff rn , where 

}:{infˆ )log(ˆ





n

n

n
e

cvDFsr srsf 


, or  }:{infˆ )log(ˆ

df
srsf n

n

n
e

cvDFsr 
 


,   (8) 

depending on the statistic used.  This definition imposes a rule that ensures the duration of the 

bubble is non-negligible – the collapse date fr̂  involves a search over )]log(ˆ[ nrn es   – 

meaning that episodes of smaller order than )log(n  are not considered significant in the 

dating algorithm.8 Phillips and Yu (2009) show under general regularity conditions that, 

under (4), (5) and (8), 
rDF and t

rDF  consistently estimate er  and fr , the probability limits 

of er̂  and fr̂  respectively. 

      PY modify the PWY test to address a weakness that it depends on using the first 

observation of the full sample as the initial observation in each recursive regression. The 

estimates, e̂  and f̂ , of the bubble origination and collapse dates are made robust first by 

constructing an initial base sample },...,{ 1 eme
XX n    of observations, where mn  

determines the initial proportion of the sample before e̂  they use, which they assess using 

                                                 
8 PY incorporate an additional tuning parameter in their minimum bubble-duration condition that they note can 
be chosen, in principle, on the basis of sampling frequency. They did not, however, use it in their subsequent 
empirical work, and for this reason we have chosen here to suppress it. See PY, pp. 467-468, for further 
discussion. 
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the Schwartz (1978) BIC criterion for unit root or explosive characteristics.  The BIC value of 

the unit root model is 
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and the BIC value of the autoregression is 
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where   e

kek nnt tnn XX


 minmin

1 , and ̂  and ̂  are the OLS estimators of   and   from 

the autoregressive model (3).  If the BIC of the unit root model is smaller than the BIC of the 

AR(1) model whose point estimate of the autoregressive parameter is greater than unity, then 

the initial condition is reset to 1min  ne  and the PWY test is re-performed with this 

initialization. Otherwise the initial base sample is extended by an additional observation from 

the past, and the BIC procedure is repeated, and again and again provided the BIC does not 

select an explosive AR process over a unit root process.  The initialization is then taken to be 

either the point where the BIC first selects an explosive AR process over a unit root process 

for the sample being considered, or t = 1 if an explosive AR process is never selected.  The 

PY test is then re-performed using this initialization, giving robust estimates )ˆ(ˆ 0 e  and 

)ˆ(ˆ 0 f  that possibly differ from e̂  and f̂ . While PY did not demonstrate the effectiveness 

of the proposed initialization method, we have found it to be instrumental in providing 

robustness to the empirical work that follows. 

 

2.3. Making the PWY-PY test robust to different data spans and sampling frequencies 

 

     One essential difficulty with the PWY-PY methodology is that the models (3)-(5) are 

based on fixed discrete-time AR specifications which are not time-invariant, in consequence 

of AR models not being self-similar models. This means that if, say, daily data were truly 

generated from a given AR specification, weekly and monthly data corresponding to the same 

time series would not satisfy the same model.9  Using the same AR model for weekly and 

monthly data would therefore entail using a misspecified model.  FGM show that the lack of 

time invariance of the model matters when using the PY test, and some of the apparently 

sharper conclusions obtained by PY in their empirical work become less secure, and are 
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sometimes even overturned, when the tests are run with the critical values given by PY using 

different data spans and sampling frequencies of the same time series.10   

     FGM proposed as a remedy to the lack of time invariance an approach analogous to one 

Phillips (1987a, b) and Perron (1989) took in the conventional unit root testing framework, to 

embed the discrete-time specifications in a continuous-time model whose solution generates 

equidistant data that exactly satisfy a discrete-time model of the form of (3). The approach, 

first solved and enacted by Phillips (1972) and described in detail by Bergstrom (1984), 

allows inference in AR models to take place on the same basis under all sampling schemes.  

Given a number of observations n, we consider different spans of the data S, and 

parameterize the sampling frequency by h, with hSn / . FGM show that the appropriate 

continuous time model that embeds (3) is the Vasicek (1977) model with unknown mean:       

)(])([)( tWddttxtxd   ,  )0(  , 0)0( xx      (t > 0);                         (11) 

where )(tx  is a stochastic process of finite variance,   and  are parameters with the 

condition on  ensuring the process is explosive, and W(t) is standard Brownian motion.  For 

a given sampling frequency h, (11) has an exact discrete-time analog: 

ththhth

h
xx 




2

1)2exp(
)())(1( )1(


  ,   00 xx h  ,   (t = 1, 2, . . . , n)       (12) 

where )exp()( hh    and t  is )1,0(NID .11  

     A test of the null hypothesis 0  in (11) is clearly equivalent to a test that 1h  in (12), 

and in this case the variance reduces to h .  The regression model (12) has the same form 

as (3) except that, crucially, it now depends on sampling frequency. 

     Instead of assessing power using PY’s DGP (4) and (5), we now use 

)(1)or(1 1
*
,1 fethhnfethth thxththxx         

      }{1}{1
1 ftf

th

k k ththX
f


    

     (t = 1, . . . , n)                           (13) 

])/exp[(*
, hkc nhn  ,   c > 0,   )1,0( .                             (14) 

                                                                                                                                                        
9 The reason is that an unobserved or missing variable problem is induced: see, e.g., Perron (1989), Marcellino 
(1999) or McCrorie and Chambers (2006). Wei (2006) provides a textbook treatment. 
10 The immediate conclusion to be drawn would be that the tuning parameter PY included to make possible 
provision for different sampling frequencies should be used to help ensure the robustness of estimates. That 
said, using such a parameter would bring a whole extra dimension to the problem of statistical inference, given 
that the size and power properties of the test statistics would depend on it. 
11 We continue to assume a fixed initial value.  FGM discuss the possibility that the initial value is drawn from a 
distribution, and important differences then emerge when comparing (12) with the model used by PM (2007a). 
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     For the purpose of calibrating critical values, daily data can be generated using (12), 

which are then skip-sampled to generate weekly and monthly data of the same series.  Note 

that skip-sampling daily data generated using (3) would not generate appropriate weekly or 

monthly data because the model specification itself would only be correct for daily sampling. 

 
2.4. Constructing critical values using the PY and FGM approaches 

    One of the innovations in the PWY and PY papers, potentially applicable beyond the 

current setting, is that deterministic functions were used to prescribe critical values that proxy 

the true critical values pertaining to the finite-sample distributions relevant for each recursive 

application of the tests.  Unusual as this may seem, the efficacy of this approach depends, in 

the usual way, on the resultant size and power properties of the tests: the better the choice of 

deterministic function, meaning (whether by accident or design) the closer the function to the 

true finite-sample distribution of the test statistic, the better will be the statistical test. The 

potential problem with the approach relates, again, to the extent to which the lack of time 

invariance of PWY’s and PY’s model specification requires the deterministic functions to be 

varied across different data spans and sampling frequencies, because the same functions 

cannot be equally valid across data spans and sampling frequencies.  This is true even for the 

same commodity series sampled in different ways.  PY have demonstrated an awareness of 

this issue by allowing their minimum bubble-duration condition to depend on a tuning 

parameter.  That said, in the actual implementation of the tests in both papers, the critical 

value functions used were only loosely calibrated on the basis of results in the Appendix of 

Phillips and Yu (2009), and no consideration was given as to whether the results would 

change were different data spans and sampling frequencies to be used given these critical 

value functions. Also, in PY the same critical value functions were used for the three main 

series and other secondary series in spite of their having different data spans and sampling 

frequencies. In PWY and Phillips and Yu (2009, 2010) the critical value functions are of the 

form  

 nrcv
n

2lnln*

  ; and  nrcv df

df

n

2lnln*  ,                 (15) 

where  and df are constants; and in PY they are of the from  

  Cnrcv
n

/ln(44.0 
  and   Cnrcvdf

n
/ln(08.0  ,                (16) 

where –0.44 and –0.08 are the 5% critical values for the full-sample statistics, 
1DF and tDF1 , 

respectively, and C is a constant.  FGM offer a systematic discussion of the robustness of the 

PWY and PY tests, and show that using (3)–(5) and assuming  , df and C are constants can 
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materially affect inference across different data spans and sampling frequencies.  In response, 

they allow for a different choice of multiplier for each sampling frequency that is calibrated 

against the data.  Here, we follow the same approach: we generate artificial daily data using 

(12) under the null, skip-sample to derive artificial weekly and monthly data, and then 

construct robust critical values for the 12-year data span in hand, for daily, weekly and 

monthly sampling frequencies. The details of this procedure are discussed in Appendix B. 

 

3. Data and Empirical Findings 
 

     The primary data constitute five commodity price series: daily front month futures New 

York Mercantile Exchange (NYMEX) gold prices, daily front month silver futures NYMEX 

prices,12 three month copper and aluminum London Metal Exchange (LME) prices and daily 

crude oil spot prices downloaded from the Energy Information Administration (EIA) web 

site. Weekly and daily prices for crude oil were also downloaded from the EIA whereas 

weekly and monthly prices for the remaining commodities are constructed by skip sampling 

the daily samples. For crude oil, where PY deflate prices by US end period stocks of crude 

oil,13 we consider both the deflated and undeflated series at the weekly and monthly 

frequency but, due to lack of data availability, only the undeflated series at the daily 

frequency. 

The sample period ranges from January 1999 to December 2010, which covers the 

decade-long bull-run in commodities, with the start date being chosen around the end of the 

so-called Internet bubble in the NASDAQ index that marks the beginning of the predictive 

period of CFG’s sequential model.14 We apply the PWY/PY recursive test methodology 

using the time-invariant regression model (12), using our calibrated critical value functions 

for daily, weekly and monthly data frequencies using our specific data span of 12 years (as 

reported Appendix B).15  We consider rejections of the null hypothesis in the direction of the 

DGP given by (13) and (14) based on estimation using the time-invariant regression model. 

Note that, as is intrinsic to the PWY/PY methodology, the DGP is not a special case of the 

regression model. 

                                                 
12 NYMEX future prices were downloaded from Datastream. Rolling is performed the first day of the month. 
13 Source: U.S. Energy Information Administration. 
14 See p. 7 of Caballero et al. (2008a). 
15 Although we use a time-invariant model, we do need to calibrate different critical value functions for different 
sampling frequencies because fixing the data span means that different sampling frequencies entail different 
sample sizes, and so different implied finite-sample distributions. 
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     The minimum bubble-duration condition is integral to the empirical implementation of the 

PWY/PY procedure. We consider a fixed span of 12 years, with daily, weekly and monthly 

data.  Taking a week as comprising 5 trading days, a month 20 trading days, and a year 240 

trading days, and applying their log-rule, gives a minimum duration condition of ln(240*12) 

for daily data, which rounds to eight consecutive days, ln(48*12) for weekly data, which 

rounds to six consecutive weeks, and ln(12*12) for monthly data, which rounds to five 

consecutive months.  

     Tables 1-5 in Appendix A report our empirical findings for crude oil, copper, gold, silver 

and aluminum based on the time-invariant model. We refer to the procedure that does not 

check for robustness with respect to the initial values of our series as basic, and the procedure 

that does using PY’s BIC-based procedure, as robust.  For each commodity, we graph the 

t
rDF  statistics and associated critical values from the daily sample, using both the initial 

sample start date and that generated by the robust BIC-based procedure. 

 
3.1. Crude oil 

     Looking first at crude oil, the basic procedure identifies a mildly explosive region in or 

within the four months April to July 2008, exactly when oil prices peaked. However, this 

region is too short to meet the minimum duration criterion for a monthly sample. Deflation of 

the price by stocks alters the estimated bubble start and end dates at the weekly frequency but 

does not affect the qualitative conclusions. Once we move to the robust procedure, the 

bubbles seen at the daily and weekly frequencies all evaporate – either because the test 

statistic falls short of the critical value or because any putative bubble that is found is too 

short. 

     The source of these results is readily seen from the t
rDF  statistic using daily data, where 

the BIC algorithm revises the sample start date from 5 January 1999 to 8 June 2007. 

However, no bubble is identified using this sample start date – the maximum t
rDF  statistic of 

0.56 occurs on 21 May 2008 but this is short of the critical value, relative to the new sample 

start date, of 0.99. Using the entire sample, the test statistic lies above the critical value 

function for eight days in May 2008, just long enough to satisfy the minimum bubble length 

condition of six days – see Figure 1. However, using the BIC-revised sample, the statistic 

does not approach the (now lower) critical value function. The graphs (not shown) for the 


rDF  statistic and using weekly data are similar. The monthly data undeflated for stocks do 
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continue to show a bubble, now robustly identified, but only for the three months May – July 

2008. 

     Our conclusion is that the evidence for a crude oil bubble in 2008 is weak: if there was a 

bubble, it had only a relatively short duration.  This result, taken at face value, suggests the 

claims of both PY and Gilbert (2010b) of there being a bubble in crude oil in 2008, made on 

the basis of critical values not calibrated for data span or sampling frequency, are seen to 

have been premature. 

 

3.2. Non-ferrous metals 

     Tables 2 and 3 repeat the analysis for the two base metals, aluminum and copper. The 

basic procedure using daily or weekly data suggests a short aluminum bubble at the start of 

2006.  This episode is too short to be caught using monthly data. When the robust procedure 

is used, no bubble is discerned, the evidence of mild explosivity being too short to call a 

bubble except when using the 
rDF statistic and the PY-type critical value function. This is 

illustrated in Figure 2. As in the case of crude oil, the evidence for an aluminum bubble 

appears weak. 

The analysis for copper is more complicated, Gilbert (2010b) having suggested there could 

be two bubbles, in 2004 and in 2006. At the daily and weekly data frequencies, the basic 

procedure stops at the 2004 episode, although this fails the minimum duration condition at 

the monthly frequency.  However, the identification of the 2004 episode as a bubble is not 

robust to the BIC procedure in relation to the starting date. Once the 2004 hurdle has been 

overcome, the robust procedure identifies the 2006 bubble, although this result depends on 

the choice of critical value function at the monthly frequency. 

 
3.3. Precious Metals 

     Using the basic procedure, gold and silver both show evidence of possible bubbles – for 

gold in 2006 and 2008 while for silver in each of 2004, 2006, 2008 and 2010.  Strictly, our 

DGP of (13) and (14), under which we computed test power, envisages there being only one 

bubble. To interpret a rejection of the null as providing corroboration for multiple bubbles 

therefore requires robustness in this direction, which has not been established herein. Homm 

and Breitung (2012) have suggested that PWY-type tests could indeed be robust to multiple 

bubbles, although in addressing this issue directly Phillips, Shi and Yu (2012) show that there 

are potential problems if the duration of the first bubble is longer than the second.  As in the 

previous three cases, the procedure robust to the initial start date offers fewer instances of 
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bubbles being discerned. In gold, a short bubble (9 or 14 working days, depending on the 

test) is identified in May 2006 at the daily frequency but this fails to meet the minimum 

duration requirement at the weekly and monthly frequencies. In silver, a bubble is also 

confirmed for the spring and early summer (April to June) of 2006, this time at the weekly as 

well as the daily sampling frequency.  However, this bubble is also too short to be detected at 

the monthly frequency. 

 
3.4. Summary 

     Overall, the evidence is consistent with 2006 bubbles in copper (where the results are the 

most clear) and silver and gold. There is much weaker evidence for a bubble in aluminum 

prices around the same time. The evidence for a bubble in crude oil prices, where the relevant 

period is the summer of 2008, is even weaker. We have noted there were a number of cases 

where possible bubbles were rejected through the failure of the minimum bubble-duration 

condition, in spite of there being some consecutive periods of seemingly mildly explosive 

behavior.  We discuss the efficacy of this condition in the next section. 

 

4. Implications 
 
     The results discussed in Section 3 have both methodological and substantive implications.  

We consider these in turn. 

 
4.1.  Methodological issues 

     In our empirical analysis, we have followed Phillips and Yu (2009), PWY and PY and 

used their minimum bubble-duration condition where, thinking in terms of test consistency, 

there is asymptotically a large amount O(n) of data separating bubble origination and 

collapse.  Set in this context, the minimum condition ensures smaller o(ln n) separations are 

not considered significant for the dating algorithm.  Because the proposed test in essence 

repeatedly applies a conventional right-sided unit root test to increasing fractions of the total 

sample, there is the potential for one or two consecutive random draws from the finite sample 

null distribution, if realised from the right-tail of the distribution, to mislead the investigator.  

Requiring a certain number of consecutive periods before a bubble is declared offers a way of 

controlling the Type I error of the test, and Phillips and Yu (2009) show that the given 

condition does so in a way that ensures the test remains consistent.  Here, we explicitly 

calibrate critical values that embody their minimum bubble-duration condition, for various 

significance levels on the basis of our chosen time span, for daily, weekly and monthly 
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sampling frequencies.  We note that using higher frequency data provides, in principle, more 

identifying information about bubbles: bubbles of very short duration, say of just a few days 

or weeks, could be too short to be able to be picked up using lower-frequency data. On the 

other hand, the condition relies on our observing a number of consecutive periods of possible 

mild explosivity in order that a bubble be actually declared. It is possible, therefore, that there 

are two consecutive episodes of mildly explosive behavior that are “close together” but are 

nonetheless not each of quite of long enough duration to count as a bubble.  In such a context, 

it is just possible that a bubble will be discerned using lower-frequency data, say weekly data, 

and not be seen in higher-frequency daily data. All in all, we believe it is sensible therefore to 

report results using all three sampling frequencies. Finally, we note an implication of using 

the minimum bubble-duration condition as PY did across all sampling frequencies: in 

practice this will mean the condition entails using a smaller number of time periods, but with 

a longer time having elapsed, when sampling at lower frequencies than at higher frequencies. 

We envisage there being scope for using the provision PY made for an extra parameter in 

their method (the tuning parameter) to put the treatment of daily, weekly and monthly data on 

a truly consistent basis, and will examine this in future work.  In terms of the current paper, 

we note that our test results are consistent with there having been bubbles identified on the 

basis of daily data, that were not identified at the weekly frequency (gold) or the monthly 

frequency (gold, silver, and, using the PWY-type critical value function, copper). 

 
4.2.  Substantive Issues 

     We now discuss the implications of our empirical results taken at face value. These results 

offer two simple (but contrasting) conclusions: 

a) The evidence for a 2008 bubble in crude oil prices is weak. 

b) There is substantial evidence for a bubble affecting both non-ferrous and precious 

metals prices in the first half of 2006. The evidence is clearest for copper and silver 

and weaker for gold and aluminum.  

On the first, it is important to bear in mind the context where in the raw data there is a known 

run-up in the oil price that occurred between 2003 and mid-2008, and a known spike in the 

price in 2007-08.  The crucial contribution of our work, recognizing that the size and power 

properties of a statistical test depend on the time span and sampling frequency of the data, is 

in the robust calibration of critical values for the span and sampling frequencies in hand.  

This helps us provide a proper statistical conclusion that cannot be achieved by casual 

inspection of the data, which might see the data too closely through the lens of 2007-08. Our 
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two basic tests – the tests that do not potentially correct for initial value impact – suggest 

there were bubbles of very limited duration in 2008, but our BIC-adjusted tests offers no 

evidence of a bubble at the 5% significance level.  It is just possible that the BIC-adjustment 

had the effect of imposing a false structural break in the form of a level shift on our 

specification, that was decisive in causing our null hypothesis not to be rejected, and so we 

prefer on the basis of our tests to say that the evidence for the 2007-08 oil price spike being a 

bubble is weak.  Certainly, it is not so strong as to suggest there was undue speculation in the 

oil price that caused Gheit (2008) to assert that:- 
   

 “I firmly believe the current oil price of $135 per barrel is inflated. I believe, based on supply 

and demand fundamentals, crude oil prices should not be above $60 per barrel . . . I cannot 

think of any reason that explains the run-up in crude oil process, beside excessive 

speculation.” (as sourced by Irwin, Sanders and Merrin, 2011) 

Hamilton (2009) provides a contrary view, offering a fundamentals-based view of the oil 

price spike based on supply and demand considerations. Another perspective on our result 

can be given in the context of Kilian and Murphy’s (2011) work, where the emphasis was on 

explaining the run-up in the oil price from 2003 to mid-2008 rather than just the spike of 

2007-08.  Indeed, taking account of the six-fold price rise over the sampling period, or even 

just the rise from 2003, rather than just focussing on the spike in 2007-08, and noting the rise 

in the price thereafter, we see a departure from trend during the spike not being at all obvious.  

The absence of a crude oil bubble offers evidence against the Caballero et al. (2008a,b) 

migrating bubble hypothesis, where the promulgated view is that a supposed bubble in the 

U.S. real estate prices migrates to the crude oil and other commodities markets. 

     Our conclusion that there is evidence for a 2006 metals bubble is also problematic for the 

Caballero et al. hypothesis because it arises too early to be consistent with their story.  This is 

because the U.S. subprime crisis manifested itself later in 2006 and through early 2007.16  

One interpretation that might be offered to support their hypothesis would be that investors 

started anticipating the collapse of the U.S. real estate market and began moving into the 

metals market earlier than Caballero et al. predicted.  But if that were the case, one would 

expect investors also to have moved then into the more prominent crude oil market.  A 

second possibility is that at the beginning of the U.S. subprime crisis, metals including gold 

and silver were seen as being overvalued, in spite of their historical roles as stores of value, in 

                                                 
16 In their empirical analysis, PY date the U.S. subprime event as beginning in late 2006, and the $5bn bailout of 
the small German bank IKB in the last week of July 2007 as being the public onset of the subprime crisis.  
Lehman Brothers failed on 15 September 2008. 
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consequence of a bubble that had been created earlier for other reasons.  If so, it is difficult to 

imagine that such behavior is consistent with the primacy of increased financialization view 

in explaining commodity price movements, because this would require evidence of increased 

co-movement between the energy and metals markets from around 2003. 

Our view, therefore, is that it is preferable to consider the 2006 bubbles as a general 

metals-market phenomenon. The commonality of the movements across metals can be 

explained either in terms of common fundamental driving factors, or because investors and 

speculators took views on metals as a class, or because of contagion across the group. These 

explanations are not mutually exclusive. One important common driving factor could be the 

expansion of Chinese industrial demand against a background of low levels of mine and 

smelter investment in the 1990’s and early 2000’s in conjunction with long investment lead 

times (see Radetzki, 2006).  This factor also explains the relatively subdued performance of 

aluminum compared with copper.  It is unclear, however, that this explanation is easily 

applicable to gold, which may have made its own running as a store of value as the financial 

crisis developed. 

     An alternative possibility is that the commonality of these movements in the metals 

market arises out of the financial market, including “non-fundamental” financial market 

factors such as the growth of index-related commodity investment and trend-following 

speculative behavior, as discussed previously.  It could be argued that, by amplifying chance 

price movements, investors might collectively generate the very trends that, at the individual 

level, they are seeking to follow (see, e.g. De Long et al. 1990).17  As we have noted, 

behavior of this sort has the potential to result in bubbles.  What is clear, however, that if 

bubbles were indeed created through this source, it is difficult to argue that they were so 

excessive as to justify regulation in financial markets.  

 
5. Conclusion 

 
     The recursive methodology recently proposed by PWY and PY for testing for bubbles is 

rapidly establishing itself, having brought a much-needed evidential basis for testing for 

explosivity and bubbles and, at the same time, being straightforward to implement. FGM 

have shown there is a potential drawback to the test as initially constructed, owing to its 

sometimes lack of robustness to changes in data span and sampling frequency. We have 

addressed this by proposing an approach based on using a time-invariant form of PY’s model 
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specification.  This enabled us to calibrate critical value functions against given data spans 

and sampling frequencies in a way that robustifies the PWY and PY tests and retains all of 

the advantages of their statistical methodology.  Our conclusions based on using these robust 

critical values are that while there was a general increase in commodity futures prices over 

2004 to 2008, the commodities did not move in unison, with metals showing greatest run-up 

in 2006 and oil in 2008.  We did not find strong evidence that the oil price spike in 2007-08 

was a bubble but we found substantial evidence for bubble behavior in the metals market 

affecting both non-ferrous and precious metals at the point of greatest run-up in 2006.  

Indeed, we have suggested the data exhibit features that suggest the run-up was a general 

metal markets phenomenon around this time, consistent with the point of strongest demand 

for industrially-consumed raw materials from China and other developing countries being 

just before the onset of the U.S. subprime crisis, and the subsequent collapse arising from 

global repercussions for growth following the subprime crisis.  The data do not support the 

Caballero et al. (2008a,b) hypothesis firstly because the evidence for a bubble in crude oil in 

2008 is very weak; and secondly because the greatest run-up in metals prices came towards 

the end of, but not after, the run-up in U.S. real estate prices that preceded the subprime 

crisis. Also, our results do not support there having been co-movement of prices between the 

energy and metals markets.  While this observation does not rule out financialization being an 

important determinant of commodity futures prices generally, it is unable fully to account for 

and explain the variability seen across commodities, suggesting other factors are essential.      

     There are, of course, limitations in terms of what can be inferred from a pure time series 

approach and in future work, we should like formally to test fundamentals-based explanations 

against increased financialization using a structural model, with particular focus on possible 

common bubbles in the metals market in 2006.  The framework proposed by Kilian (2009) 

could offer possibilities, but will require the development of new statistical theory to 

encompass aspects of mild-explosivity and bubbles, and in particular the date-stamping of the 

origination and collapse of bubbles, as offered in the current paper.  While conclusions about 

the commodities literature can depend upon the lens through which one looks, say 

microeconomic or macroeconomic, or even economist versus financial analyst, we do feel 

our empirical results have provided an evidence base that allows for some interpretation and 

discrimination among competing hypotheses of commodity futures price behavior. 

 

                                                                                                                                                        
17 Other studies have failed to find evidence of any impact of financial actors on commodity futures prices. See 
Sanders and Irwin (2010, 2011) and Stoll and Whalley (2010, 2011). 
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Appendix A: tables and graphs 
 

Table 1: Crude Oil Bubble Results 
 Critical  

value 
 Daily Weekly Monthly Weekly (stock-deflated) Monthly (stock-deflated)

  DF   tDF  DF   tDF  DF   tDF  DF   tDF  DF   tDF  
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R
ob

us
t PWY 
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Figure 1: DFt, crude oil, daily data 

Figure 1 charts the tDF  statistic and the associated 

PY critical value for the initial start date (dark) of  5 

January 1999 and the robust start date of 8 June 2007 

as revised by the BIC procedure. Using the robust 

sample start date, no bubble is identified. 
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Table 2:  Aluminum  Bubble Results 
 Critical  

value 
 Daily Weekly Monthly 

  DF   tDF  DF   tDF  DF   tDF  

S
im
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e PWY 
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Figure 2: DFt daily data, aluminum 

Figure 2 charts the tDF  statistic and the associated 

PY critical value for the initial start date (dark) of  5 

January 1999 and the robust start date of 4 August 

2004 as revised by the BIC procedure. Using the 

robust sample start date, the length of the putative 

2004 bubble, previously estimated as having lasted 

for 14 working days using the simple procedure, is 

seen as having lasted for only three days using the 

robust procedure. It is therefore disqualified by the 

minimum duration requirement of 7 days. 
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Table 3: Copper Bubble Results 

 Critical  
value 

 Daily Weekly Monthly 
  DF   tDF  DF   tDF  DF   tDF  

S
im

pl
e PWY 

Start 02/02/04 12/02/04 04/02/04 04/02/04 11/05 10/05 
End 22/02/04 20/02/04 21/02/04 21/02/04 10/06 10/06 

PY 
Start 02/02/04 12/02/04 04/02/04 11/02/04 07/05 07/05 
End 22/02/04 20/02/04 21/02/04 21/02/04 10/06 11/06 

R
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Start 13/04/06 10/04/06 12/04/06 05/04/06 too 
short 

too 
short End 08/06/06 09/06/06 07/06/06 07/06/06 

PY 
Start 12/04/06 10/04/06 12/04/06 05/04/06 03/06 11/05 
End 08/06/06 09/06/06 07/06/06 07/06/06 09/06 10/06 
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Figure 3: DFt, copper, daily data 

Copper appears to exhibit two possible bubble episodes, the 

first in 2004 and the second in 2006. The simple procedure 

catches the short 2004 bubble at both the daily and weekly 

sampling frequency, but discards this episode as too short at 

the monthly frequency. The robust procedure identifies the 

longer 2006 bubble. At the daily and monthly sampling 

frequency, this is dated as running from April to June 2006. 

The monthly estimates are sensitive to the choice of critical 

value function – the supposed bubble is too short to qualify if 

the PWY function is used but lasts for twelve months on the 
tDF  statistic iff the PY function is used. 
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Table 4: Gold  Bubble Results 

 Critical  
value 

 Daily Weekly Monthly 
  DF   tDF  DF   tDF  DF   tDF  
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Figure 4: DFt, gold, daily data 

The simple estimates suggest that, like copper, gold may 

exhibit two possible bubble episodes, the first in 2006 and the 

second in 2008. The simple procedure identifies the 2006 

bubble except is the case of the t
rDF , where the claimed 

bubble is too short, allowing identification of the supposed 

2008 bubble.  The robust procedure confirms a short bubble in 

May 2006 on daily data in three cases out of four, but the 

bubble is now too short to be detected at the weekly or 

monthly frequency. The supposed 2008 bubble turns out not to 

be robust relative to the revised 2004-05 sample start dates. 
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Table 5: Silver  Bubble Results 
 Critical  

value 
 Daily Weekly Monthly 

  DF   tDF  DF     tDF  DF   tDF  
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Figure 5: DFt, silver, daily data

The simple estimates suggest four possible bubble episodes, in 

2004, 2006, 2008 and again in 2010. The simple procedure 

identifies the 2004 bubble at the daily and weekly frequency, 

but all the possible bubbles turn fail to satisfy the minimum 

duration condition at the monthly frequency. The robust 

procedure discards the 2004 bubble but confirms a bubble in 

the first half of 2006 which again fails to meet the minimum 

duration criterion at the monthly data frequency. 
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Appendix B: Calibration and power  
 
     We explicitly calibrate critical values for the data span in hand, generating artificial daily 

data using (12) under the null hypothesis.18  Skip-sampling these daily data generates proper 

weekly data and monthly data, as (12) is by construction a time-invariant model.  We take      

S = 12, with sampling frequencies h = 1/240 (daily data), 1/48 (weekly data) and 1/12 

(monthly data). 

     The PWY-type critical value functions are used by PWY and Phillips and Yu (2009, 

2011), and are of the form  

 nrcv
n

2lnln*

  ; and  nrcv df

df

n

2lnln*  . 

The PY-type critical value functions used by PY are of the form 

  CnrDFcv
nn

/ln(;1  



  and   CnrDFcv tdf

nn
/ln(;1   , 

where  , df  and C are given constants, and 
n

DF ;1  and t

n
DF ;1 are the %n  right-sided 

critical values for the full-sample statistics, 
1DF and ,1

tDF  respectively. 

     Our approach to calibration is to allow the multipliers above to vary, and on the basis of 

10,000 simulations of precisely 12 years of generated daily data (corresponding to exactly the 

span used in the empirical analysis), select values of the multipliers on the basis of a grid 

search that delivers critical values corresponding to the right-tailed test sizes of 1%, 2.5%, 

5% and 10%, approximated to 3 decimal places. Such calibration is therefore undertaken on 

the basis of the finite-sample distributions of the test statistics, and automatically embodies 

the minimum bubble-duration condition and our required initial choice of fraction 0r  of the 

total sample on which we base our first estimate using the recursive method. We set 1.00 r , 

i.e. at 10% of the total sample, to ensure our application of the recursive method begins well 

before the major run-up in commodity prices seen from 2003. 

 
 

[Table 6 about here] 
 
 
 
 
 
 

                                                 
18 Under the null, the constant in the regression model (12) is automatically eliminated, unlike in the standard 
discrete-time case used by PY, where strictly the test is of the joint hypothesis of zero drift and a unit AR 
parameter. 
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Table 6: Calibrated critical values under the FGM 
methodology for a 12 year span: the DFt statistic and 

PY-type critical value functions 
 

 
        
        Daily     Weekly   Monthly        C 

 
 

5%        5.22     4.583 4.4805      -0.07 
2.50%        5.396       4.764     4.408   0.23 

1%          5.68       5.117     5.112  -0.07 
10%       4.946       5.116     4.092  -0.44 

 
 
     For the power analysis, we now generate data under the DGP (13) and (14).  This requires 

us to specify, in addition to what was needed above, a bubble start date, a bubble end date 

(and so, implicitly, a bubble duration) and various values of the autoregressive parameter 

*
, hn  under the alternative.  This allows us to trace out a power function for each significance 

level.  We consider two possible bubbles under the alternative: one notionally beginning in 

January 2006 and ending in December 2008, and one corresponding to the bubble PY found 

in crude oil.  In each case we consider four values of the AR parameter under the alternative. 

We report the same statistics that Phillips and Yu (2009) reported to underpin both PWY and 

PY.   

[Table 7 about here] 

 

Our results provide justification for interpreting rejections of the null hypothesis as 

corroboration of bubble behavior, and we have additionally given some insight into how 

power varies with the choice of significance level. 


