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Abstract 

 

This paper introduces a framework for designing dynamic asset allocation strategies that can be used 

by insurance companies within the Solvency II regulatory framework to achieve a substantial 

exposure to equity risk, and the associated premium, while taking into account the presence of 

stochastically time-varying risk and return parameters. Extensive numerical and empirical simulations 

confirm that the opportunity cost of static portfolio strategies ignoring return predictability is 

substantial in the presence of Solvency II constraints. Our results have important potential 

implications for the design of improved forms of dynamic investing solutions that could help 

insurance companies facing exceedingly high capital charges associated with equity investments. 
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1. Introduction 

The Solvency II directive of the European Parliament and Council (2009) introduces a prudential 

framework for the computation of regulatory capital requirements of insurers within the European 

Union. The objective of the new Solvency II regulatory framework, which should come into force at 

the beginning of 2013, is to introduce unified economic risk-based solvency requirements for 

insurance companies across all EU member states.  

As a risk-based methodology, the Solvency II regulatory framework defines the solvency impact of 

investing in various asset classes. These solvency conditions are defined over a short-term horizon in 

that they aim at ensuring that the insurance company has enough free capital to cover a loss that 

could occur due to an instantaneous extreme event over the following year. More specifically, the 

directive sets the risk-based regulation for European insurance companies. Capital requirements are 

calculated, such as the company’s assets remaining above its liabilities with a 99.5% probability over 

a one-year horizon (which is summarized as a 99.5% 1-year VaR requirement). Insurers will be able to 

either use the "standard formula" to apply all relevant stress tests that define the extreme market 

event, or model the overall balance sheet and look at the 99.5% Value-at-Risk over one year of the 

surplus, formally defined as the difference between asset and liability values. For each identified risk 

factor, the extreme scenario is calibrated as being the worst loss that could occur over 1 year.  

The standard formula of the Solvency II framework makes investment in equity very costly, since the 

capital charge evaluated as the 99.5% VaR is taken to be a 39% loss as a base case. In practice, the 

estimation of capital charges for equities takes into account the so-called dampener effect, see 

article 106 of the directive of the European Parliament and Council (2009), and varies in a counter-

cyclical manner in the 29%-49% range. Life insurance companies that have ring-fenced retirement 

provisions can also reduce capital requirements via the duration-based approach, which allows, 

subject to prior supervisory approval, the risk-charge to be calculated with a long-term equity 

volatility assumption that is lower than that in the standard formula. Despite these two opportunities 

for decreasing the regulatory cost of capital, capital charges for equity investment within Solvency II 

remain extremely high, and are often described as “prohibitive” by insurance companies. 

In reaction to the forthcoming implementation of this prudential framework, some large insurance 

companies have already started to reduce their exposure to equity risk so as to prepare for the new 

regulatory constraints. While this forced shift away from access to the equity risk premium implies 

significant opportunity costs for insurance companies and their clients, it is beyond the scope of the 

present paper to question the validity and relevance of imposing a particularly strong penalty on 

equity investments.
2
 The focus of this paper is instead to take these regulatory constraints as given, 

and analyze, in a stylized partial equilibrium continuous-time setting, how dynamic allocation 

strategies can be designed to allow insurance companies to maintain a non-trivial equity exposure 

without an exceedingly high associated cost in terms of capital consumption from the regulatory 

perspective.  

Our approach to long-term investing in the presence of Solvency II constraints builds upon an 

abundant stream of research on long-term investment decisions in the presence of a stochastic 

opportunity set. The development by Merton(1969,1971) of dynamic portfolio theory in the late 
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sixties and early seventies, following pioneering work by Hakansson(1969,1971) and Samuelson 

(1969), has led to a number of fundamental new insights with respect to simple static portfolio 

selection models (see Markowitz (1952)). In early seminal work, Merton (1971) has shown that the 

presence of a stochastic opportunity set leads non-myopic long-term investors to incorporate 

intertemporal hedging demands in addition to the standard speculative motive. Subsequent papers 

have shown that when maximizing utility from terminal (nominal) wealth, an investor only hedges 

those state variables that impact the nominal short-term rate and the market prices of risk (see for 

example Detemple et al. (2003)). Some papers, e.g. Lioui and Poncet (2001), Munk and Sørensen 

(2004), have explicitly solved the portfolio choice problem when only one of the two state variables 

is stochastic, with a separate analysis of the impact of interest rate risk. Other papers have solved the 

impact of a mean-reverting equity risk premium - see Kim and Omberg (1996) for the incomplete 

market case with utility from terminal wealth only, and Wachter (2002) for the complete market case 

with utility from intermediate consumption. More realistic continuous-time models have 

subsequently been introduced to simultaneously account for the presence of uncertainty on both 

interest rates and market prices of risk, either by solving numerically the Hamilton-Jacobi-Bellman 

equation obtained through dynamic programming - see Brennan et al. (1997), or more recently, by 

exploiting the affine structure of the model in the sense of Dai and Singleton (2000) and Liu (2007) 

and solving the HJB equation explicitly, e.g. Munk et al. (2004) and Sangvinatsos and Wachter (2005). 

One of the main qualitative findings that perhaps stands out from the literature on long-term 

portfolio decisions with return predictability is the fact that equities serve as a hedge against 

unfavorable equity returns in the presence of mean-reverting returns. As a result, the optimal 

allocation to stocks is higher compared to the myopic case, and investors with longer time-horizon 

hold more stocks compared to investors with shorter horizon - see Kim and Omberg (1996) and 

Wachter (2002). One key problem, however, is that this prescription can lead to extremely difficult 

situations when risk is assessed from a shorter-term perspective, in particular in the context of a 

severe bear equity market such as the one experienced in 2008. In fact, it appears that most, if not 

all, investors even those with the longest possible horizons (such as insurance companies, but also 

pension funds) inevitably face a number of regulatory (or otherwise) short-term performance 

constraints. The Solvency II regulation is a clear example of such constraints, as it imposes strict risk 

budgets over a one-year horizon. 

In other words, it appears that one key element missing from the literature on life-cycle investing is 

how the presence of short-term performance constraints faced by investors would affect the optimal 

long-term allocation decisions. Fortunately, the problem of portfolio selection with performance 

constraints has in fact been examined by a totally separate strand of the literature, which has shown 

that the presence of such constraints leads long-term investors to adjust the allocation to risky 

versus risk-free assets in a state-dependent manner as a function of a suitably-defined risk budget 

state variable. The literature on portfolio choice with minimum performance constraints starts with 

the literature on portfolio insurance, which focuses on strategies that aims to guarantee a given 

minimum level of terminal wealth, based either on Constant-Proportion Portfolio Insurance (CPPI) 

introduced by Black and Jones (1987) and Black and Perold (1992), or on Option-Based Portfolio 

Insurance (OBPI) strategies, see Leland (1980). More recently, Grossman and Zhou (1996) show that 

CPPI strategies are optimal for investors who maximize their expected utility from terminal wealth 

subject to the constraint that this wealth should be greater than or equal to some fixed floor. In a 

related effort, Basak (2002) suggests introducing an implicit rather than an explicit constraint on 

terminal wealth, which amounts to the assumption that marginal utility goes smoothly to infinity as 
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wealth shrinks to the floor. Several papers have generalized these models by imposing minimum 

performance constraints that involves choosing a stochastic, as opposed to a deterministic, 

benchmark. Teplá (2001) shows that the optimal strategy in the presence of such constraints involves 

a long position in an exchange option. Basak et al. (2006) generalize the approach by considering less 

stringent constraints on performance, i.e. by imposing that the minimum performance should be 

achieved with a given probability, not necessarily with probability 1. In all these studies, however, 

investment opportunities are constant so that optimal strategies in the absence of performance 

constraints are of the fixed-mix nature, and the presence of return predictability is simply not 

accounted for.
3
  

In what follows, we mix these various ingredients and analyze a long-horizon dynamic allocation 

model in the presence of short-term Solvency II constraints, as well as stochastic interest rates, 

mean-reverting equity risk premium and volatility. Because solving the optimal allocation problem in 

the presence of both a stochastic opportunity set and short-term constraints may not be feasible in 

analytical form, we use a different approach. More specifically, we first use the martingale approach 

to portfolio optimization in incomplete market settings to solve the problem in the absence of short-

term constraints. In this context, we extend Munk et al. (2004) by relaxing the simplifying assumption 

of a perfect negative correlation between equity returns and risk premium uncertainty - see for 

example, Sangvinatsos and Wachter (2005). While our setting is rich enough to account for the 

aforementioned features, we manage at this stage to maintain a (quasi) explicit representation for 

the optimal portfolio strategy. In a second step, we introduce a stylized risk budget constraint 

directly drawn from an analysis of the Solvency II regulation, and introduce a simple transformation 

of the optimal unconstrained strategy, directly inspired by the form of the optimal portfolio strategy 

with performance constraints in the case of constant opportunity set, that would lead to a strategy 

respecting the Solvency II constraints.  

While the resulting strategy, which we call “constrained” strategy, cannot to be regarded as optimal 

in a formal sense, it enjoys a number of desirable properties; in particular it allows for a potentially 

substantial allocation to equities while respecting a given capital charge risk budget. Besides, one of 

the key benefits of this approach is that it allows us to maintain quasi-analytical expressions for the 

strategy in the presence of short-term constraints. Having access to analytical solutions turns out to 

be critically useful for any attempt to perform Monte-Carlo simulations, which is one of the formal 

requirements by the regulation for insurance companies that want to use internal models and 

deviate from the standard formula.  

From a qualitative standpoint, our main finding is to show that long-term objectives and short-term 

constraints need to be mutually exclusive. In fact, our analysis shows that the rational response to 

the Solvency II regulation should not be a dramatic static decrease of the allocation to equity but 

instead a time-varying allocation to equity that will be both a function of the current opportunity set, 

of the time-horizon, as well as of the outstanding risk budget at the current time.  

                                                           
3
 An extension to the case of stochastic opportunity set has been proposed by El Karoui et al. (2005), who show that OBPI maximizes 

expected utility in a more general framework where risk and return parameters are not necessarily constant. However, they adopt a 

reduced-form approach, directly modeling the unconstrained strategy. In particular, the impact of stock return predictability on the 

optimal unconstrained strategy does not appear, while it is at the heart of the conflict between long-term objectives and short-term 

constraints. 
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The results of an analysis based on 10,000 Monte Carlo simulations show that the average returns 

achieved by the Solvency II allocation strategies are increasing in the capital charge, which was 

expected since the average stock allocation increases also in the Solvency II risk budget. The wealth 

allocated to equities, and therefore the average performance, is also an increasing function of the 

time-to-horizon, which can be explained by the decreasing term-structure of equity risk implied by 

the presence of mean-reversion in equity returns. Finally, even though the dynamic portfolio strategy 

is implemented in a discrete time (monthly), we find that there is no violation of the target Solvency 

II risk budgets at the 99.5% confidence level, and in fact no violation at the 100% level given our 

scenarios. In that sense, the Solvency II benchmarks achieve the initial objective, that is allowing for a 

substantial allocation to equities while respecting given Solvency II risk budgets.  

In order to have a better understanding of the opportunity costs involved in following standard static 

asset allocation strategies, as opposed to using dedicated dynamic asset allocation benchmarks that 

have been specifically engineered to allow for the optimal spending of the regulatory risk budgets, 

we turn to the dual analysis. We consider the static benchmark that has an equity allocation leading 

to a given level of Solvency II capital requirement (using the standard formula of 39% for equity), and 

then look at the corresponding average returns. The results obtained for such strategies show that 

the static allocations have a performance level substantially lower than that of the comparable 

Solvency II benchmarks. Moreover, we see that the 99.5% max losses computed from our 10,000 

Monte Carlo simulations are always higher than the capital requirement obtained from the Solvency 

II standard formula, which suggests that lower stock allocations should be used, leading to even 

lower performances for the static benchmarks. We finally confirm the robustness of these results by 

analyzing the performance of the strategies over historical datasets. 

The paper is organized as follows. In section 2, we introduce the formal model. In section 3, we 

present the methodology we use to calibrate the model and the results we obtain. In section 4, we 

perform numerical and empirical testing of the model, while some concluding thoughts can be found 

in section 5. 

2. A Formal Dynamic Allocation Model in the Presence of Solvency II Constraints  

In this section, we solve the long-term optimization program of an institutional investor, interpreted 

here as an insurance company, which faces stochastic investment opportunities. We first introduce 

the setting, and then present the optimal strategy in case of market incompleteness coming from 

possibly imperfect correlation between stock returns and stock risk premium, volatility risk, and we 

finally introduce Solvency II-type constraints. 

2.1 State variables and asset returns 

We consider an investor with a finite horizon T . For simplicity, and also because the focus of the 

paper is on equity investments, we assume that the investors has access to two asset only, the risk-

free asset and a stock index. The nominal short-term interest rate is assumed to follow a mean-

reverting process, of the type proposed by Vasicek (1977):  
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 d ( )d dr r
t t tr a b r t zσ= − +  (2.1) 

The locally risk-free asset, which we shall refer to as cash, has a value given by: 

 0

0
exp d

t

t sS r s =
  ∫   

Since it has zero duration, the cash does not provide any hedge against interest rate risk. In order to 

have a hedging instrument against interest rate risk, one would have to use nominal bonds with 

positive duration. In fact, because the Vasicek model considered here has only one factor, a single 

constant-maturity bond would be sufficient to replicate the entire term structure. While other 

papers assume that a zero-coupon is traded, see Sørensen (1999) and Munk et al. (2004), we will not 

make that assumption here for the aforementioned reasons. The dynamics of the stock price index 

S  is given by:  

 
d

d dS S S St
t t t t t

t

S
r t z

S
σ λ σ 

 
 

= + +  (2.2) 

As in Kim and Omberg (1996), Wachter (2002) and Munk et al. (2004), we assume that the 

conditional Sharpe ratio of that stock follows a mean-reverting process:
4
  

 d d dS S
t t tt zλ λλ κ λ λ σ 

 
 

= − +  (2.3) 

If one assumes, as in Wachter (2002), that innovations to this state variable are perfectly anti-

correlated with the innovations to stock returns, i.e. if 1Sλρ = − , then Sharpe ratio risk is spanned. In 

the remainder of section 2, we do not assume such a perfectly negative correlation.  

Our model also allows the conditional variance of stock returns to be stochastic. This feature was not 

present in the related literature except in Kim and Omberg (1996), Liu (2007) and Chacko and Viceira 

(2005), but we deem it to be an important component of a long-term investment model, given the 

large empirical evidence for time-variation in the volatility of stock returns. We follow Heston (1993) 

by assuming that the conditional variance 
2SV σ 

 
 

=  of stock returns follows a mean-reverting 

square-root process:  

 d d dV V
t t t tV V V t V zα σ 

 
 

= − +  (2.4) 

The square root in the diffusion term prevents the process from going negative.  

The equations that describe the model can also be written in terms of a four-dimensional Brownian 

motion z  and of the unit volatility vectors 
iρ , that are defined by:

5
  

 d dii
ttz z i {r S V}ρ λ

′ 
 
 

= , = , , ,  

A market price of risk vector is obtained as:  

                                                           
4
Munk et al. (2004) assume in fact that the expected excess return on the stock, not its Sharpe ratio, is a mean-reverting process. However, 

since the volatility of the stock is constant in their model, it is equivalent to assume mean-reversion in the expected excess return or in the 

Sharpe ratio. 
5
We warn the reader that we are using the unit volatility vectors (whose norm is by definition equal to 1), rather than the standard 

volatility vectors (whose norm is equal to the volatility of the process). 
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 SS
t tλ λ ρ=  

As shown by He and Pearson (1991), the other market prices of risk are those vector processes of the 

form λ ν+ , where ν  satisfies ( ) ' 0S
tρ ν =  almost surely for all date t . Each of these prices of risk 

defines a pricing kernel M , through:  

 ( )
2

0 0
exp d d

2

t ts s
ss st sM r s z t T

λ ν
λ ν

 
 ′ 
 
 
  

 +
= −  +  − , ≤+

 
 
∫ ∫  

There are infinitely many pricing kernels, since there are infinitely many vectors orthogonal to 
Sρ

. 

2.2 Derivation of the optimal unconstrained strategy 

We let tw  denote the weight allocated to the locally risky asset, which is the stock index. The weight 

allocated to the cash is thus 1 tw− . With these notations, we can write the budget constraint of an 

investor who receives no non-financial income and does not consume as:  

 d d dS S S S
t t t t t t t t tA A r w t w zσ λ σ  

  
  

= + +  (2.5) 

Throughout the paper, we let 
1

1( ) xU x
γ

γ
−

−=  be the Constant Relative Risk Aversion (CRRA) utility 

function. We assume that the objective of the insurance company is assumed to focus on the 

maximization of the risk/return trade-off in terminal wealth, while risk constraints with respect to 

the liabilities will be handled separately, as explained in the next sub-section: 

 ( )max T
w

E U A 
  

 (2.6) 

subject to budget constraint (2.5). It should be emphasized at this stage that our ambition is not to 

develop a full-fledged asset-liability management model for insurance companies, which would be 

extremely challenging given the complexity of insurance companies’ liabilities. Instead our objective 

is to develop a stylized asset-only model for equity allocation by an insurance company facing 

Solvency II constraints.  

(2.6) is a dynamic problem since the control variable is the process of weights allocated to the stock 

index. In the martingale approach initially developed by Cox and Huang (1989), the dynamic program 

is replaced by an equivalent static program where the control variable is the terminal wealth and the 

budget constraint is expressed in terms of the present value of the terminal wealth. But the market is 

incomplete, so there are infinitely many pricing kernels in the economy, hence infinitely many static 

problems. As shown by He and Pearson (1991), the original dynamic problem (2.6) is equivalent to 

the static problem obtained with one particular pricing kernel M ∗
, known as the “minimax” pricing 

kernel. Formally, the portfolio choice problem is equivalent to:  

 ( ) 0max subject to
T

T T T
A

E U A E M A A∗  
     

, =  

and the optimal portfolio strategy is the one that replicates the optimal payoff. The following 

proposition gives a full description of this optimal strategy.  
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Proposition 1. Consider the optimization problem (2.6) subject to budget condition (2.5).  

• The optimal payoff is given by:  

 
1

1

0

1T T

T

A
A M

E M

γ

γ

−∗ ∗ 
 

   −∗  
   
 

=  (2.7) 

where M ∗
 is the minimax pricing kernel, and the optimal wealth process reads:  

 
1

1

0

1
, S

t t t t

T

A
A M g t r

E M

γ

γ
λ

−∗ ∗   
   

     −∗  
   
 

= ,  (2.8) 

where g  is a function of time and the equity Sharpe ratio given by:  

 ( ) 2
1 2 3 4

1 1
, exp ( ) ( ) ( ) ( )

2
g t r C T t C T t r C T t C T t

γλ γ γ γ λ γ λ
γ

  
  
  
    

−, = − ; + − ; + − ; + − ;  

• The optimal allocation to stock is given by:  

 ( )2 3 4

1 1
1 1 ( ) ( )

S Sr r S
St

t tS S S
t t t

w C T t C T t C T t
λ λλ ρ σ ρ σγ γ λ

γσ γ σ γ σ
∗  

 
 

   = − − − − − − ; + − ;   
   

 (2.9) 

with the remainder of wealth invested in cash.  

• The functions 1( )C γ⋅; , 2( )C γ⋅; , 3( )C γ⋅;  and 4( )C γ⋅;  are the solutions to a system of 

(coupled) ordinary differential equations (ODEs) given in 0 

Proof. See Appendix 

We now discuss the structure of the optimal allocation in more detail. The first term 

S
t

S
t

λ
γσ

 on the 

right-hand side of equation (2.9) is already present when investment opportunities are constant (see 

Merton (1969). It represents the speculative demand for stocks. The only difference from the 

constant opportunity economy is that the weight allocated to stocks in this term has become a 

function of the current Sharpe ratio and volatility. The speculative demand increases when the risk-

return ratio of the stock is more attractive, and it is decreasing in the volatility. An investor with 

logarithmic utility (which is obtained for 1γ = ) would set the weight allocated to the stock equal to 

the speculative demand.  

The second term ( )2

1
1

Sr r

S
t

C T t
ρ σ

γ σ
 − − − 
 

 on the right-hand side of equation (2.9) can be regarded 

as the hedging demand against interest rate risk of insurance companies that have an investment 

horizon of T years. It is clear from the separation formula that for 1γ > , the hedging demand against 
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interest rate risk is increasing in the relative risk aversionγ , which makes sense: more risk-averse 

investors want to hold more of the portfolio that is risk-free over the long run.
 
In general, this 

hedging demand rationalizes the investment in a pure discount bond with a maturity date matching 

the investor’s horizon.
6
 In the context of this analysis, however, we focus on the equity allocation for 

insurance companies, and recognize that insurance companies manage interest rate risk separately, 

in the context of their fixed-income portfolio. In the absence of fixed-income securities, some 

hedging demand can still exist for an equity-only portfolio if equity returns have a non-zero 

correlation with interest rates. On the other hand, if the correlation 
Srρ  is zero, then the hedging 

demand cancels out, as can be seen from the fact that this hedging demand is proportional to that 

term. In the empirical calibration exercise, we actually take the correlation between stock returns 

and interest rates to be zero so that the optimal allocation strategy that we consider in what follows 

does not contain a hedging demand against interest rate risk.  

The last term 3 4

1
1 ( ) ( )

S
S
t S

t

C T t C T t
λ λρ σγ γ λ

γ σ
 
 
 

 − − ; + − ; 
 

on the right-hand side of equation (2.9) 

involves the quantity 

S

t S
t

λ λ
λ ρ σβ

σ
≡ , which is the beta of the stochastic Sharpe ratio with respect to 

the stock index. Hence this term represents a hedging demand against Sharpe ratio risk. With 

reasonable parameter values, the correlation 
Sλρ will be negative and the quantities 3( )C T t γ− ;  

and 4( )C T t γ− ; will be positive.
7
 Hence the term represents an excess demand for stocks that arise 

from the uncertainty in the value of future Sharpe ratios. From the ODEs given in 0, we see that 

these quantities depend on both the interest rate and Sharpe ratio models. Hence the non-

logarithmic investor ( 1γ ≠ ) must not only know the current opportunity set, i.e. the risk and return 

characteristics of the various assets over the next trading interval, but also how these characteristics 

evolve over time. 

Overall, the decomposition formula of Proposition 1 is similar to the one introduced by Detemple 

and Rindisbacher (2010). The first term is the speculative demand for the locally risky asset. The 

second term represents an investment in the portfolio that best replicates the asset that is safe over 

the long-run, here a zero-coupon bond of maturity T . The third term is a hedging demand against 

the uncertainty in prices of risk.  

It is clear from Proposition 1 that the weight allocated to the stock is not only time-dependent, but 

also state-dependent, in contrast to the heuristic deterministic glide paths of existing life-cycle funds. 

In particular, the optimal allocation is a function of the stock index Sharpe ratio and the stock 

volatility. The speculative demand is independent of age, which comes as no surprise given that its 

purpose is to achieve the best risk-return trade-off over the next trading interval, regardless of the 

horizon of the investor. By contrast, the hedging demand against Sharpe ratio risk depends explicitly 

upon age. Moreover, the fact that 4C  is increasing in the time-to-horizon implies that young 

investors will react more to a rise in the expected return than older ones.  

                                                           
6
Under quite general assumptions, Wachter (2003) shows that the utility-maximising policy for an extremely risk-averse investor concerned 

with nominal terminal wealth is to fully invest in a nominal zero-coupon bond that matches his horizon. 
7
 Kim and Omberg (1996) show that the functions 

3( )C T t γ− ;  and 
4( )C T t γ− ; are positive and increasing for reasonable values of 

the parameter set. 
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It is unlikely that the allocation to the stock will be a monotonic decreasing function of age as 

advocated by current financial advice, since the Sharpe ratio and the volatility vary stochastically 

over time. Nevertheless, both 3C  and 4C  shrink to zero as the investor approaches his horizon date. 

As a consequence, an investor close to his horizon will only hold the speculative demand and cash.  

2.3 Respecting the Solvency II requirements 

The strategies that have been introduced in the previous section are designed to maximize expected 

utility from the terminal wealth at a given horizon. They are optimal in the long-term since they 

generate the highest possible average asset level for a given uncertainty in the terminal value of the 

assets. Nonetheless, such optimal strategies may end up violating short-term Solvency II constraints 

in market conditions with strong bear equity markets.  

The focus of this section is to design a set of asset allocation strategies that should not only maximize 

the risk/return trade-off in terminal asset levels, but also satisfy given Solvency II budgets. The idea 

here is to have a separate control for risk-aversion, i.e. aversion with respect to uncertainty in long-

term asset levels, and loss-aversion, i.e. aversion with respect to short-term losses. More precisely, 

the requirement here is that the wealth generated by the strategy at any time within a year should 

never fall below a fraction 1 δ−  of the capital invested at the beginning of the year, where δ  can be 

interpreted as a given Solvency II equity charge risk budget. This requirement can be mathematically 

formulated as :  

 ( ) [ ]01 almost surely for all  in 0,  1tA A t Yδ≥ − ,  (2.10) 

Typical values for δ  are 5%, 10%, 15%, and 20%. The floor, defined as ( ) 01F Aδ= −  is the 

minimum acceptable wealth level, and the outstanding risk budget at time t is the distance of current 

wealth tA  to the floor.  

In this context, and building on the comparison with constant proportion portfolio insurance (CPPI) 

strategies we propose to consider a family of strategies, which we label Solvency II benchmarks in 

what follows, where the weight allocated to stocks is of the form:  

 1c
t tc

t

F
w m w

A
∗ 

= − 
 

 (2.11) 

Here tw∗
 is the optimal weight referring to the unconstrained strategy of Proposition 2, m  is a 

constant multiplier and 
c
tA  is the current value of the strategy. Note that in the limit of a floor 

converging to zero (no Solvency II capital charges), then the constrained allocation policy matches 

the unconstrained allocation policy, as it should.  

Equation (2.11) says that the dollar amount allocated to the unconstrained strategy is an increasing 

function of the risk budget 
cA F− . On the other hand, when the risk budget shrinks to zero, the 

portfolio is entirely invested in cash, since 
c
tw  is equal to zero. Since the cash investment grows 

faster than the floor, which is constant, a positive risk budget is recovered just after wealth has 
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landed on the floor. Hence strategy (2.11) guarantees that the wealth is always at least equal to the 

floor, and if the floor is attained, the portfolio does not remain invested in cash at later dates. 

2.4 Implementation Challenges 

This section discusses the practical implementation of the constrained 
c
tw  and unconstrained tw∗

 

strategies introduced in the previous part. These strategies are not directly implementable in 

practice, for the following three main reasons:  

• They assume continuous trading, while trading is possible only in discrete time;  

• They assume that short sales and leverage are permitted;  

• They assume a perfect knowledge of the current Sharpe ratio and volatility of the stock.  

 

To address the first two issues, we simply implement a discrete-time version of the strategy (2.11) 

with monthly trading, and resize the weights so as to rule out short positions and leverage. To 

address the third issue, we propose to use a parsimonious partition of the set of possible values for 

equity volatility and equity risk premium, and take robust estimates based on such partitions. It is 

common knowledge that the Sharpe ratio is much harder to estimate than the volatility, therefore 

we expect to have larger estimation errors coming from the Sharpe ratio estimation. Following 

Martellini and Milhau (2010), we propose to discretize the state space of these two processes, using 

a finer grid mesh for the volatility in order to take into account the difference in the estimation 

errors. This discretization introduces a loss of optimality that has been shown to remain low in 

Deguest et al. (2011). Let us now describe how these partitions are performed. Introducing upper 

and lower bounds for these two processes, the crudest possible partition of market conditions would 

involve replacing all realizations of the process 
Sλ  by the constant 

inf sup

mid 2

S S
S λ λλ +=  (see section 3.3 for 

more details on how the equity risk premium process is filtered), and all realizations of 
Sσ  by 

inf sup

mid 2

S S
S σ σσ += .  

The second partitioning level of the set of market conditions would involve distinguishing between 

high, moderate and low risk premium levels, and would therefore contain three buckets:  

 mid sup mid supinf mid inf mid

2 2 2 2

S S S SS S S S λ λ λ λλ λ λ λ   + + + +−∞, , , , ,∞    
        

 

and three standard values: inf
Sλ , mid

Sλ  and sup
Sλ . More generally, it can be verified that the 

th
ik  (

0ik ≥ ) partitioning level has 
12 1ik − +  standard values, where 1i =  for 

Sλ , and 2i =  for 
Sσ .  

For the upper and lower bounds of 
Sλ  and 

Sσ , we propose the following values  

 
inf sup

inf sup

0 25 0 75

0 05 0 40

S S

S S

λ λ

σ σ

= . = .

= . = . ,
 

Note that the volatility bounds are in line with observations of historical volatilities and of the VIX 

index for most of the available data. However, since the Sharpe ratio is not observable (see section 

4.4 for more details on what exact crude proxy will be used for the unobservable Sharpe ratio on the 



12 

 

equity index), the choice of the bounds has to be done differently. We therefore propose to calibrate 

them using the parameters of the Sharpe ratio process. Indeed, they roughly correspond to the mean 

value λ  plus or minus the long-term standard deviation 2
λσ
κ  of 

Sλ . Once these bounds are set, we 

build a partition using a number of standard values (equally spread between the upper and lower 

bounds) equal to 1 12 1k − +  for 
Sλ  and to 2 12 1k − +  for 

Sσ  as explained previously. Since the 

estimation of the Sharpe ratio is known to be difficult, we will work with very low partitioning levels (

1 2k = ). Nonetheless, the estimation of the volatility is a pretty standard estimation, so we can 

consider high partitioning levels ( 2 5k = ). 

3. Calibration of the Model 

In this section, we present the various approaches that we have considered in order to calibrate the 

model parameters. Table 1 summarizes the set of parameters that we will consider in our Monte 

Carlo simulations. 
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Table 1 

Long-Term Parameter Values 
This table displays the base case parameter values used in the numerical experiments. 

 

Nominal Short-Term Rate 

b  3.06 % 

a  0.13 
rσ  0.98% 
rλ  -53.00% 

Sharpe Ratio 

κ  0.35 
λσ  23.22% 

λ  40% 

Volatility 

α  5.07 
Vσ  48.00% 

V  21.38% 

Correlations 
Sλρ  – 1 

Srρ  0 

SVρ  – 0.767 

rVρ  0 

3.1 Interest rate parameters: 
r r aσ λ, ,  and b  

In order to calibrate the interest rate parameters, we use data from Bloomberg on the yield curve of 

the French Government. Then, we considered a maximum likelihood approach that has been 

extensively used in previous academic and practitioner studies, see for example by Fisher and Gilles 

(1996). The advantage of this method is that even for a single-factor Vasicek model, several yield 

maturities can be used in the calibration procedure. This method has been implemented in Duffee 

(2002) to calibrate more sophisticated models called "essentially affine". The main assumption is that 

we observe a zero-coupon bond yield without noise (we actually need here as many yields as the 

number of factors in the term structure model):  

 0
0 0 0( ) ( )t tD r aY

ττ τ τ= − .ɶ  (3.1) 

Then, we assume that all the other observations i
tY
τɶ  with different maturities 1 mτ τ, ...,  will contain 

an additional measurement error 
2(0 )i

t Nτ
εε σ,∼  like in the Kalman filter framework:  

 ( ) ( )i i
ti i t i tD r aY
τ ττ τ τ ε= − + ,ɶ  

where tr  is equal to 
0

0 0

0

( )
( )

tY a
b

τ

α

τ τ
τ
+

 using equation (3.1). Since the measurement errors added to the 

other observations are assumed to be independent of each other and of the short rate tr , the log-

likelihood of the system is simply the sum of the log-likelihoods from the pure time series (equation 

(3.1)) and the pure cross-sectional estimations. If the distribution of the measurement errors is not 
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Gaussian, then a quasi maximum likelihood method can be used to compute an approximation of the 

objective function to maximize. Note that this approach has also been used to calibrate a dynamic 

asset allocation model in Sangvinatsos and Wachter (2005). The results of the calibration in table 1 

are line with the literature (negative risk premium, low volatility). 

3.2 Volatility parameters: 
Vσ α,  and V  

The current value of volatility can be computed from daily returns of a stock index, either using the 

historical volatility formula or by fitting an EGARCH model. It can also be obtained from volatility 

indexes such as the VSTOXX index for the European market. We have favored the historical volatility 

because it is a simple estimator, and it can be computed from any stock returns, whereas existing 

volatility indexes only reflect the volatility of a given pool of stocks. 

Concerning the parameters of the volatility dynamics, we use the calibration results of Ait-Sahalia 

and Kimmel (2007), where the authors extend the information of the historical returns of the stock 

index with the information available in option prices. They use the instantaneous volatility, proxied 

by the implied volatility, and then maximize the joint likelihood function of the observed data 

( )t tS V, . This approach is called the integrated volatility proxy method, see Ait-Sahalia and Kimmel 

(2007). 

Other estimation methods are discussed in the academic literature. Moment-based techniques are 

described by Chacko and Viceira (2003). The approach is based on the characteristic function of ln tS  

which can be derived in closed form. A similar technique is discussed by Jiang and Knight (2002). 

Other methods include approximating the conditional moments of integrated volatility through high-

frequency data, see Bollerslev and Zhou (2002), filtering techniques based on the characteristic 

function, see Bates (2006), and a Bayesian approach, see Eraker (2001).  

A direct computation of the expected value of the VSTOXX index over the period 1999-2011 gives 

25.99%V = , and of its volatility (using adjusted volatility daily returns) gives 49.48%,Vσ = which 

corroborates the results of Ait-Sahalia and Kimmel (2007) (see table 1), even though they use US 

market data. The parameters of the volatility process will not play any role in the strategy, but will 

only be used in the simulation procedure. 

3.3 Sharpe ratio parameters: 
λσ κ,  and λ  

In empirical tests, the challenge is to obtain estimates for both the current value of the equity Sharpe 

ratio, and also for the parameters that are involved in its diffusion process. In the empirical results 

presented in this paper, we follow an estimation approach based on the Solvency II methodology 

used to assign Capital Requirement for Equity (SCRE). Indeed, CEIOPS defines the SCRE as follows 

(see paragraph 3.88 page 49 of the calibration paper by CEIOPS (2010):  
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 SCRE 39 max min 10 10

t

t t

t

R

S S
% % %

S

  
  −
  = + ; ;− ,
  

    
���

 (3.2) 

where tS  is the value at time t of the equity index, and 

 
1D

3

1

days in 3Y i

i

t

t d
d t Y

S S
−

= −
= ∑
♯

 

is the moving average index value computed over the last 3Y of daily data. In other words, equation 

(3.2) means that we compute the return using the average stock index value of the last 3Y, denoted 

tS , and today’s value tS , and cap this value to 10% and floor it to -10%, and then add 39% to the 

final result. If the stock index has increased in value, the expected return looking forward is taken to 

be lower than before the increase in equity value, and therefore we increase the SCRE by at most 

10%. Obviously, other approaches can be used as well. In particular, a standard approach in the 

academic literature, e.g. Viceira (2009), consists in using the Dividend Yield (or the Price/Earnings 

Ratio) to make the Sharpe ratio observable. 

Regarding the parameters of the Sharpe ratio process, there is no clear consensus in the literature, 

since the Sharpe ratio is not observable. One reference paper using a mean-reverting process for the 

Sharpe ratio is Munk et al. (2004). The authors used a Kalman filter to calibrate their model (since 

they do not have a stochastic volatility component, their model remains Gaussian, and the Kalman 

filter can be used). The speed of mean reversion found in Munk et al. (2004) is equal to 6.08%, but 

their estimate comes with a high variance, which shows that this parameter is rather difficult to 

calibrate. The long-term mean of the Sharpe ratio is 44.10%, which is of the same order as the 

historical Sharpe ratio on the S&P500. Finally, they obtain a volatility for the Sharpe ratio equal to 

4.70%. 

Another approach to calibrate the parameters of the Sharpe ratio process could be to use the time 

series extracted from the dividend yield. Indeed, the linear regression of the stock index excess log-

returns with respect to the log-dividend yield 

ln ,ht h
t t t

t

S
h Y m DY p

S
ε+ 

− × = + + 
 

 

gives us the value of the two regression parameters m  and p . Then, an estimate of the stock 

Sharpe ratio over the period [ ]t t h, +  can be obtained as follows from the expected excess log-

returns: 

 ( )
2

1 12 2 21
2

t t
m DY p S mDY p

thS S S S th
t t t t t S

t t

V
h m DY p

V

σ
λ σ σ λ

σ

+   +
 

   
 
 

+ +× − = + ⇒ = =  
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The equation above relies on the fact that h is a short horizon, so the expected excess log-returns can 

be approximated by 
2

1
2

S S S
t t tλ σ σ 

 
 

− . Once we have extracted the Sharpe ratio time series, the 

calibration method relies on maximum likelihood estimation (MLE) technique, and allows one to 

estimate the three parameters of the Sharpe ratio process. The results of the MLE calibration using 

two different data sets are given in table 2. 

 

 

Table 2 

Calibration of the Equity Sharpe Ratio Parameters with MLE 
This table displays the maximum likelihood estimates of the Sharpe ratio parameters using the time series extracted from 

the linear regression of the excess log-returns to the dividend yield, together with the historical volatility. Quarterly 

observations are used for both US and European datasets. 
 

 
S&P 500 

(Mar 1989 - Mar 2011) 

EUROSTOXX 50 

(Dec 1994 - Mar 2011) 

Calibrated Parameters 

λ  44.25 % 36.45 % 

κ  0.29 0.43 
λσ  28.99 % 23.22 % 

Model Implied Quantities 

2

λσ
κ  38.15 % 25.11 % 

 

 

 

Since the estimates ofκ , and λ  are known to lack robustness, we have decided to be conservative 

and report the values of 0.35 for the speed of mean-reversion and 40% for the long-term Sharpe 

ratio. These values are two midpoints between 0.29 and 0.43, and 36.45% and 44.25% calibrated 

from the two different datasets. Note that the Solvency II benchmarks would be further magnified if 

one was to use a more optimistic value for the long-term Sharpe ratio. Nonetheless, the parameters 

obtained in both data sets are in line with the literature, e.g. Dimson et al. (2002). 

3.4 Correlation parameters 

The correlation parameters are set as follows. We take the correlation between unexpected stock 

returns and innovations to the Sharpe ratio to be 1− . This choice makes Sharpe ratio risk spanned by 

the stock itself, and is supported by different calibrations on US market data: Campbell and Viceira 

(1999) report a correlation of -96% between excess returns on the CRSP value-weighted index and 

the dividend yield; Xia (2001) finds a value of -93%; and our own calibration yields a value of -98.3%. 

The correlation between unexpected stock returns and innovations to volatility is taken from Ait-

Sahalia and Kimmel (2007) and therefore set to -76.7%. The negative value accounts for the fact that 

volatility tends to rise when stock returns go down. The other correlations are set to zero, since no 

significant correlation has been observed in the literature, e.g. Munk et al. (2004).  
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4. Numerical Analysis 

In this section, we describe how we simulate the performance of the Solvency II benchmarks. In 

order to satisfy the Solvency II requirements, we need to impose short-term constraints at each time 

step. Since profits and losses are computed at the end of each calendar year, it seems natural to 

design the Solvency II benchmarks as roll-overs of strategies with a given horizon T , stopped after 

one year, and such that the Solvency II constraints described in section 2.4 are satisfied at each date. 

In other words, the benchmarks are reset on a yearly basis, with the arbitrary one-year time-frame 

chosen to be consistent with the Solvency II regulatory focus on short-term losses. We will let the 

horizon T vary across different values in the empirical illustration, in order to illustrate the properties 

of the strategy over short to long investment periods. Specifically, we will choose

3 5 10 15T Y Y Y Y= , , , .  

The unconstrained strategy 
*w  is of the form given in proposition 2 (where we take the correlation 

Srρ  to be zero): 

 *
3 4

1
1 ( ) ( )

S
St

t t tS
t

w C T t C T t λλ γ γ λ β
γσ γ

 
 = − − − ; + − ;   

 
 

leading to the Solvency II strategy given by:  

 *1c
t tc

t

F
w m w

A

 
= − 

 
 

The process of weights 
cw  defines a family of Solvency II benchmark strategies for various values of 

the investment horizon 3  5  10  or 15T Y Y Y Y= , ,  and various values of the Solvency II capital 

charge budget 5,  10,  15 or 20%δ = . In order to take into account practical constraints, the 

implementation of these benchmarks will be done in discrete time, and will involve short-sale 

constraints on the unconstrained strategy 
*w , and partitions of the state space of volatility and 

Sharpe ratio.  

The family of Solvency II benchmarks is parameterized by two subjective parameters:  

• the relative risk aversion γ ;  

• the constant multiplier m .  

The risk aversion γ  and multiplier values will be calibrated in such a way that the average allocation 

to the equity index is sufficiently high to obtain significant exposure to the equity risk premium, but 

also in such a way that the allocation never gets so high at any point in time that it might lead to 

violating the Solvency II floor in the empirical analysis.  

In what follows, we consider two numerical experiments. The first one is based on a set of 10,000 

Monte Carlo simulations using the parameters described in the first section. The second one is based 

on a first historical dataset, where we use the longest available official daily history (with a start in 

January 1997) for the RUSSELL Global Index (in US Dollars) as a proxy for the equity index, and the 3-

month T-Bills as a proxy for the cash. We have also repeated the analysis with shorter historical 

dataset, where the RUSSELL Global and Developed indexes (currency-hedged version, in Euros, 
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available only since 1999, date of creation of the Euro) are used as proxies for the equity index, and 

the 1-month EURIBOR rate is used as a proxy for the cash, and obtained qualitatively similar results, 

which we do not report here for brevity. When using historical data, we report the distribution of the 

performance of the various Solvency II benchmarks over all one-year sub-periods in the sample 

period, with a starting date at the beginning of each calendar year. 

4.1 Analysis based on Monte Carlo simulations 

There are two key parameters of the model that we have not yet calibrated: 

• the relative risk aversion γ 

• the multiplier m 

These two parameters are calibrated so as to generate a substantial exposure to the equity risk 

premium while ensuring that the Solvency II capital constraints are respected for all δ and T. The 

trade-off is as follows: since taking an exceedingly large value for the risk-aversion parameter γ will 

lead to the Solvency II benchmark being mostly invested in cash, we want to have a value for this 

parameter that generates a reasonably large average allocation to equities. Regarding the multiplier, 

increasing the m value will lead to increasing the upside potential (more aggressive spending of the 

risk budget) while also increasing the probability of hitting the floor or even underperforming the 

floor because of the presence of residual gap risk when the strategy is implemented in discrete time 

(here with a monthly frequency).  

Our target was to obtain an average (across time and scenarios) allocation to equities that would 

range from around 20% to around 80% as a function of risk budgets δ and time-horizon T, with the 

lowest value corresponding to small risk budgets (i.e. δ = 5%) and short horizons (i.e. T = 3 years), and 

the highest value corresponding to large risk budgets (i.e. δ = 20%) and long horizons (i.e. T = 15 

years). In what follows, we take the values γ = 7 and m = 5, which generate a range that is close to 

the target range (see table 3) without leading to violations of the risk budgets at the 99.5% 

confidence level. 

We have performed a number of robustness checks, including testing that these outcomes 

(reasonably large range of allocations to equities without violations of the risk budgets) are robust 

with respect to perturbations of the current values of the interest rate, Sharpe ratio, and volatility. 

We have performed four different stress-tests (see table 11 of the Appendix for detailed results): 

• low interest rate regime r0=1% 

• high volatility regime σ0=25% 

• low Sharpe ratio regime λ0=25% 

• combination of the three previous regimes 

Once the choice of γ  and m is fixed as above, we run 10,000 Monte Carlo simulations using the 

parameters described in table 1. The results in table 3 show that the average returns achieved by the 

Solvency II benchmarks are increasing in the capital charge δ, which was expected since the average 
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stock allocation increases also in the Solvency II risk budget δ. We also note that the wealth allocated 

to equities, and therefore the average performance, is also an increasing function of the time-to-

horizon T, which can be explained by the decreasing term-structure of equity risk implied by the 

presence of mean-reversion in equity returns. Overall, we also note that even though the dynamic 

portfolio strategy is implemented in a discrete time (monthly), there is no violation of the target 

Solvency II risk budgets at the 99.5% confidence level, and in fact none at the 100% level given our 

scenarios. In fact, the risk budget is not entirely spent in most cases, and it is only for large δ and T 

values that the risk budgets are close to being spent. Hence, we find for T = 15 years a maximum loss 

of 19.58% for the δ = 20% risk budget (see panel C of table 3). In that sense, the Solvency II 

benchmarks achieve the initial objective, that is allows for a substantial allocation to equities while 

respecting given Solvency II risk budgets. 

 

 

Table 3 

1Y-Return Statistics and Risk Measures of the Solvency II Benchmarks 
This table displays the performances and measures of risk of 16 Solvency II Benchmarks together with the average 

allocation in the simulated equity index over a 1Y-period. 

 

Panel A: Horizon T=3Y 
 δ=5% δ=10% δ=15% δ=20% 

Average Return 4.33 % 5.27 % 6.16 % 6.78 % 

Standard Deviation of returns 2.73 % 4.81 % 6.72 % 7.92 % 

Max Loss at 99.5%
1
 2.90 % 6.82 % 10.78 % 14.66 % 

Max Loss
1
 3.57 % 8.12 % 12.77 % 17.42 % 

Proba of Violating Floor  0 % 0 % 0 % 0 % 

Av. Stock allocation 15.61 % 27.66 % 38.39 % 44.86 % 
 

Panel B: Horizon T=5Y 
 δ=5% δ=10% δ=15% δ=20% 

Average Return 4.57 % 5.69 % 6.72 % 7.44 % 

Standard Deviation of returns 3.38 % 5.99 % 8.22 % 9.61 % 

Max Loss at 99.5%
1
 3.36 % 7.59 % 11.91 % 16.20 % 

Max Loss
1
 3.91 % 8.76 % 13.60 % 18.45 % 

Proba of Violating Floor  0 % 0 % 0 % 0 % 

Av. Stock allocation 19.09 % 33.65 % 45.93 % 53.33 % 
 

Panel C: Horizon T=10Y 
 δ=5% δ=10% δ=15% δ=20% 

Average Return 4.92 % 6.32 % 7.53 % 8.38 % 

Standard Deviation of returns 4.53 % 7.96 % 10.64 % 12.30 % 

Max Loss at 99.5%
1
 3.88 % 8.48 % 13.11 % 17.70 % 

Max Loss
1
 4.45 % 9.31 % 14.30 % 19.29 % 

Proba of Violating Floor  0 % 0 % 0 % 0 % 

Av. Stock allocation 24.47 % 42.54 % 56.74 % 65.48 % 
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Panel D: Horizon T=15Y 
 δ=5% δ=10% δ=15% δ=20% 

Average Return 5.08 % 6.57 % 7.85 % 8.76 % 

Standard Deviation of returns 5.10 % 8.88 % 11.74 % 13.52 % 

Max Loss at 99.5%
1
 4.04 % 8.73 % 13.46 % 18.19 % 

Max Loss
1
 4.70 % 9.66 % 14.62 % 19.58 % 

Proba of Violating Floor  0 % 0 % 0 % 0 % 

Av. Stock allocation 26.78 % 46.19 % 61.09 % 70.35 % 

(1) The max losses have been computed in percentage of the initial asset value A0=100. 

 

We now move on to compare the performance achieved by the Solvency II benchmarks with the 

performance achieved by comparable static benchmarks that involve a constant allocation to 

equities. We perform this comparison from two distinct dual perspectives. 

First, for each value of δ and Τ, we compute the constant equity allocation such that the average 

returns of the static allocation match the ones of the SII benchmarks, and then analyze what the 

maximum losses are at the 99.5% and 100% confidence levels, and also what are the Solvency II 

capital charges that would correspond to these equity allocations.  

Table 4 displays the performances of such static benchmarks, together with risk statistics. One 

important observation is that the max losses computed with a 99.5% probability are always higher 

than the tolerance threshold δ. In some cases, the maximum loss is more than twice the allocated 

risk budget (see for example in panel D of table 4 a maximum loss of 44.21% for the 15 year horizon 

and the 20% risk budget). Probabilities of violating the risk budget can also be substantial, and reach 

values as high as close to 7%. This shows that for a similar return performance, it is always better to 

choose the dynamic allocation offered by the SII benchmark in order to decrease the risk of violating 

the Solvency II constraints. Moreover, the use of the standard formula to compute the SII capital 

requirement leads to values that are higher than δ most of the time for T=5Y, and all the time for 

T=10Y and T=15Y. 
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Table 4 

1Y-Return Statistics and Risk Measures of Static Allocations 
This table displays the performances and measures of risk over a 1Y period of 16 static allocations strategies invested in the 

stock index and in cash. The allocation to equity is chosen such that the average returns of the static allocation match the 

average returns of the corresponding Solvency II Benchmarks of table 3. Solvency II Benchmarks together with measures of 

risk, and average allocation in the simulated equity index. The last row of each panel contains the capital requirement 

derived from the standard formula of the Solvency II regulation. 

 

Panel A: Horizon T=3Y 
 δ=5% δ=10% δ=15% δ=20% 

Average Return 4.33 % 5.27 % 6.16 % 6.79 % 

Standard Deviation of returns 2.83 % 5.00 % 7.05 % 8.54 % 

Max Loss at 99.5%
1
 6.04 % 12.18 % 17.57 % 21.24 % 

Max Loss
1
 9.79 % 18.21 % 25.60 % 30.54 % 

Proba of Violating Floor 1.05 % 1.24 % 1.11 % 0.76 % 

Stock allocation 14.00 % 24.90 % 35.10 % 42.40 % 

Capital Requirement  

(39% for equity) 
5.46 % 9.71 % 13.69% 16.54% 

 

Panel B: Horizon T=5Y 
 δ=5% δ=10% δ=15% δ=20% 

Average Return 4.57 % 5.69 % 6.72 % 7.44 % 

Standard Deviation of returns 3.38 % 5.96 % 8.38 % 10.08 % 

Max Loss at 99.5%
1
 7.68 % 14.76 % 20.84 % 25.03 % 

Max Loss
1
 11.93 % 21.76 % 30.01 % 35.32 % 

Proba of Violating Floor  2.72 % 2.79 % 2.50 % 1.62 % 

Stock allocation 16.80 % 29.70 % 41.60 % 49.90 % 

Capital Requirement  

(39% for equity) 
6.55 % 11.58 % 16.22% 19.46% 

 

Panel C: Horizon T=10Y 
 δ=5% δ=10% δ=15% δ=20% 

Average Return 4.92 % 6.32 % 7.53 % 8.38 % 

Standard Deviation of returns 4.18 % 7.44 % 10.30 % 12.33 % 

Max Loss at 99.5%
1
 9.94 % 18.53 % 25.58 % 30.24 % 

Max Loss
1
 15.06 % 26.91 % 36.00 % 41.77 % 

Proba of Violating Floor 5.41 % 5.54 % 4.98 % 3.48 % 

Stock allocation 20.80 % 37.00 % 51.00 % 60.80 % 

Capital Requirement  

(39% for equity) 
8.11 % 14.43 % 19.89% 23.71% 

 

Panel D: Horizon T=15Y 
 δ=5% δ=10% δ=15% δ=20% 

Average Return 5.08 % 6.57 % 7.85 % 8.76 % 

Standard Deviation of returns 4.56 % 8.03 % 11.07 % 13.24 % 

Max Loss at 99.5%
1
 11.01 % 20.01 % 27.37 % 32.25 % 

Max Loss
1
 16.53 % 28.88 % 38.23 % 44.21 % 

Proba of Violating Floor 6.99 % 6.99 % 6.07 % 4.42 % 

Stock allocation 22.70 % 39.90 % 54.70 % 65.20 % 

Capital Requirement  

(39% for equity) 
8.85 % 15.56 % 21.33% 25.43% 

(1) The max losses have been computed in percentage of the initial asset value A0=100. 
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Second, in order to have a better understanding of the opportunity costs involved in following 

standard static asset allocation strategies, as opposed to using dedicated dynamic asset allocation 

benchmarks that have been specifically engineered to allow for the optimal spending of the 

regulatory risk budgets, we turn to the dual analysis. More precisely, we consider the static 

benchmark that has an equity allocation leading to δ % of SII capital requirement (using the standard 

formula of 39% for equity), and we then look at the corresponding average returns. 

Table 5 displays the results obtained for such strategies. They show average returns that are lower 

than the returns of the 3Y-SII benchmark for δ = 5%, lower than the returns of the 5Y-SII benchmark 

for δ = 10% and 15%, and lower than the returns of the 10Y-SII benchmark for δ = 20%. Overall, this 

analysis confirms that the static allocations do not perform as well as the SII benchmarks. Moreover, 

we see that the 99.5% max losses computed from our 10,000 Monte Carlo simulations are always 

higher than the capital requirement obtained from the SII standard formula, which suggests that 

lower stock allocations should be used, leading to even lower performances for the static 

benchmarks. We will observe the same results with the historical datasets, which illustrates that 

these results are not mere artifacts of our simulated scenarios. 

 

 

Table 5 

1Y-Return Statistics and Risk Measures of Static Allocations Respecting Solvency II 
This table displays the performances and measures of risk over a 1Y period of 4 static allocations strategies invested in the 

stock index and in cash. The allocation to equity is chosen such that the capital requirement computed with the standard 

formula of the Solvency II regulation is equal to δ% 

 

 δ=5% δ=10% δ=15% δ=20% 
Average Return 4.22 % 5.34 % 6.45 % 7.56 % 

Standard Deviation of returns 2.60 % 5.15 % 7.74 % 10.36 % 

Max Loss at 99.5%
1
 5.34 % 12.57 % 19.28 % 25.72 % 

Max Loss
1
 8.88 % 18.76 % 27.91 % 36.17 % 

Proba of Violating Floor 0.68 % 1.40 % 1.77 % 1.84 % 

Stock allocation 12.82 % 25.64 % 38.46 % 51.28 % 

Capital Requirement  

(39% for equity) 
5 % 10 % 15% 20% 

(1) The max losses have been computed in percentage of the initial asset value A0=100. 

 

Overall, these results suggest that the Solvency II benchmarks allow for a more efficient use of the 

Solvency II risk budget. Intuitively, this is because they enjoy the benefits of dynamic allocation 

strategies that can deliver the highest risk-adjusted long-term performance (the life-cycle investing 

paradigm) while respecting short-term risk budgets (the risk-controlled investing paradigm). In other 

words, the pre-commitment to reducing the allocation to equity in those times and market 

conditions that require such a reduction so as to avoid over-spending Solvency II risk budgets allows 

insurance companies to invest on average a higher allocation to equity compared to a simple static 

strategy that is calibrated so as to respect the same Solvency II constraints. 
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4.2 Analysis based on historical data 

We now turn to the analysis based on historical data, which can be used to confirm whether the 

strong results obtained on the basis of Monte Carlo scenarios are confirmed in the context of actual 

return time-series. The backtests are performed using the Russell Global index in US Dollar as a proxy 

for the equity index, and the 3-month US T-Bills for cash. 

Table 6 report the average annual performances obtained over each 1Y-period starting in January 

1997 up to the end of 2010. The results show an average performance that increases with the 

maturity T. This observation is the same as for the Monte Carlo simulations, and illustrates again the 

downward-sloping term-structure for equities. The broad agreement of these results with the results 

obtained in the Monte Carlo analysis is a comforting indication of robustness of the results with 

respect to model and parameter specification. 

Moreover, we observe that the average performances increase with δ, which was already the case in 

the Monte Carlo simulations. Of course, this result may not hold true for any historical scenario. In 

particular, when the dataset contains many falls in the equity market, increasing the risk budget will 

lead to lower, as opposed to higher, performance. It is only when an average performance is 

estimated over many different scenarios that increases in the risk budget will lead to increases in 

performance due to the positive equity risk premium. 

The results based on historical scenarios also confirm that the Solvency II risk budgets are never over-

spent (with a 99.5% confidence), even when looking at daily performance and when the sample 

period includes extremely severe bear markets as in 2000-2003 and 2008. In fact, even for the 

longest time-horizon Solvency II benchmarks of T = 15Y, the target risk budgets are respected over 

the sample period since the violation occurs less than 0.19% of the time, which is below 0.5%. 

Moreover, when a violation occurs, we note that the losses remain very close to the target of 

δ %. This last result suggests that Solvency II benchmarks can offer an extremely high level of safety 

to insurance companies, even though they do not come with the formal (and expensive) guarantee 

of option-based solutions. 
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Table 6 

Backtest Results of the Solvency II Benchmarks 
This table displays the average annual performance over each 1Y-period from January 1997 up to the end of 2010. The 

dataset includes the Russell Global equity index in US Dollars and the 3-month US T-Bills. The allocation is rebalanced on a 

monthly basis. 

 

Panel A: Horizon T=3Y 
 δ=5% δ=10% δ=15% δ=20% 

Average Performance 4.81 % 6.25 % 7.01 % 7.23 % 

Max Loss at 99.5%
1
 4.24 % 8.75 % 13.25 % 17.75 % 

Max Loss
1
 4.69 % 9.51 % 14.32 % 19.13 % 

Proba of Violating Floor 0 % 0 % 0 % 0 % 
 

Panel B: Horizon T=5Y 
 δ=5% δ=10% δ=15% δ=20% 

Average Performance 5.20 % 6.92 % 7.88 % 8.26 % 

Max Loss at 99.5%
1
 4.57 % 9.32 % 14.07 % 18.82 % 

Max Loss
1
 4.99 % 10.02 % 15.05 % 20.08 % 

Proba of Violating Floor 0 % 0.03 % 0.03 % 0.03 % 
 

Panel C: Horizon T=10Y 
 δ=5% δ=10% δ=15% δ=20% 

Average Performance 5.52 % 7.54 % 8.81 % 9.37 % 

Max Loss at 99.5%
1
 4.81 % 9.72 % 14.64 % 19.55 % 

Max Loss
1
 5.23 % 10.41 % 15.59 % 20.77 % 

Proba of Violating Floor 0.08 % 0.08 % 0.08 % 0.08 % 
 

Panel D: Horizon T=15Y 
 δ=5% δ=10% δ=15% δ=20% 

Average Performance 5.54 % 7.57 % 8.96 % 9.58 % 

Max Loss at 99.5%
1
 4.87 % 9.82 % 14.77 % 19.72 % 

Max Loss
1
 5.33 % 10.57 % 15.81 % 21.04 % 

Proba of Violating Floor 0.14 % 0.16 % 0.19 % 0.19 % 

(1) The max losses have been computed in percentage of the initial asset value A0=100, and on a daily basis. 

4.3 Impact of tracking error constraints for active portfolio management 

In practice, the allocation to equities by insurance companies can take the form of investment in 

active managers. This is a possible source of concern since the tracking error of the active manager 

return will imply a deviation of the portfolio return from the passive index returns, which are used to 

generate the Solvency II benchmark allocations. In this context, one might wonder what the 

maximum level of tracking error would be so as to maintain the absence of violation of the risk 

budgets. 

• Moderate level of active portfolio management with an average α = 1% added value and a 

tracking error TE = 2%, 

• High level of active portfolio management with an average α = 2% added value and a 

tracking error TE = 4%. 
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The methodology we use consists in modeling the added-value by the active manager as a process 

that is independent from the return of the equity index (an assumption which will be relaxed below), 

and has a mean and standard deviation that are consistent with the assumptions made on α and TE. 

More precisely, the new return of the equity index is now modeled as: 

, , , , ,  where  (0,1)S S
t t h t t h t t h t t hr r h TE h Nα ε ε+ + + +→ + + ∼  

Therefore, in order to obtain a benchmark with active management, we use the same weights as for 

the benchmarks with passive management (i.e. when α = TE = 0) but invest in an actively managed 

equity index. Table 7 covers the case of moderately active portfolio management, while table 8 

exhibits the case of a high level of active management.  

It is interesting to note that the active management of the portfolio has a small negative influence on 

the max losses, but does not have a negative impact on the max losses with a 99.5% probability. In 

other words, only the minimum of the portfolio distribution is found to be slightly affected by high 

tracking error values, but not the quantile at a 99.5% level. In all cases, the maximum loss remains 

within the risk budget. On the other hand, the benefit from a positive alpha leads to a substantial 

increase in average performance. 

 

 

Table 7 

Backtest Results of the Solvency II Benchmarks with Moderate Portfolio Management 
This table displays the average annual performance over each 1Y-period from January 1997 up to the end of 2010. The 

dataset includes the Russell Global equity index in US Dollars (with moderate active portfolio management) and the 3-

month US T-Bills. The moderate level of active portfolio management is simulated with an average α = 1% added value and 

a tracking error TE = 2%. 

 

Panel A: Horizon T=3Y 
 δ=5% δ=10% δ=15% δ=20% 
Average Performance 5.05 % 6.75 % 7.72 % 8.05 % 

Max Loss at 99.5%
1
 3.90 % 8.13 % 12.39 % 16.65 % 

Max Loss
1
 4.43 % 9.06 % 13.68 % 18.33 % 

Proba of Violating Floor 0 % 0 % 0 % 0 % 
 

Panel B: Horizon T=5Y 
 δ=5% δ=10% δ=15% δ=20% 
Average Performance 5.53 % 7.59 % 8.79 % 9.32 % 

Max Loss at 99.5%
1
 4.18 % 8.61 % 13.07 % 17.55 % 

Max Loss
1
 4.58 % 9.28 % 14.01 % 18.77 % 

Proba of Violating Floor 0 % 0 % 0 % 0 % 
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Panel C: Horizon T=10Y 
 δ=5% δ=10% δ=15% δ=20% 
Average Performance 5.91 % 8.31 % 9.86 % 10.62 % 

Max Loss at 99.5%
1
 4.41 % 8.99 % 13.61 % 18.25 % 

Max Loss
1
 4.81 % 9.66 % 14.54 % 19.44 % 

Proba of Violating Floor 0 % 0 % 0 % 0 % 
 

Panel D: Horizon T=15Y 
 δ=5% δ=10% δ=15% δ=20% 
Average Performance 5.95 % 8.36 % 10.06 % 10.89 % 

Max Loss at 99.5%
1
 4.45 % 9.07 % 13.71 % 18.38 % 

Max Loss
1
 4.90 % 9.80 % 14.73 % 19.68 % 

Proba of Violating Floor 0 % 0 % 0 % 0 % 

(1) The max losses have been computed in percentage of the initial asset value A0=100, and on a daily basis. 

 

Table 8 

Backtest Results of the Solvency II Benchmarks with High Portfolio Management 
This table displays the average annual performance over each 1Y-period from January 1997 up to the end of 2010. The 

dataset includes the Russell Global equity index in US Dollars (with high active portfolio management) and the 3-month US 

T-Bills. The high level of active portfolio management is simulated with an average α = 2% added value and a tracking error 

TE = 4%. 

 

Panel A: Horizon T=3Y 
 δ=5% δ=10% δ=15% δ=20% 
Average Performance 5.30 % 7.26 % 8.43 % 8.87 % 

Max Loss at 99.5%
1
 3.65 % 7.84 % 12.06 % 16.23 % 

Max Loss
1
 4.68 % 9.54 % 14.35 % 19.09 % 

Proba of Violating Floor 0 % 0 % 0 % 0 % 
 

Panel B: Horizon T=5Y 
 δ=5% δ=10% δ=15% δ=20% 
Average Performance 5.86 % 8.25 % 9.71 % 10.40 % 

Max Loss at 99.5%
1
 3.84 % 8.13 % 12.51 % 16.77 % 

Max Loss
1
 4.68 % 9.54 % 14.42 % 19.25 % 

Proba of Violating Floor 0 % 0 % 0 % 0 % 
 

Panel C: Horizon T=10Y 
 δ=5% δ=10% δ=15% δ=20% 
Average Performance 6.31 % 9.09 % 10.93 % 11.90 % 

Max Loss at 99.5%
1
 4.06 % 8.59 % 13.10 % 17.52 % 

Max Loss
1
 4.73 % 9.82 % 14.87 % 19.82 % 

Proba of Violating Floor 0 % 0 % 0 % 0 % 
 

Panel D: Horizon T=15Y 
 δ=5% δ=10% δ=15% δ=20% 
Average Performance 6.35 % 9.15 % 11.17 % 12.23 % 

Max Loss at 99.5%
1
 4.14 % 8.73 % 13.32 % 17.80 % 

Max Loss
1
 4.80 % 9.95 % 15.06 % 20.06 % 

Proba of Violating Floor 0 % 0 % 0.03 % 0.03 % 

(1) The max losses have been computed in percentage of the initial asset value A0=100, and on a daily basis. 
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In order to assess how large the tracking error can be before generating violations of the risk 

budgets, we set α = 0% so as to neutralize the benefits of active portfolio management in terms of 

expected performance, and increase the tracking error TE until we see the first constraint violations. 

The results of this numerical experiment give a tracking error of 6%. In that case, the violations of the 

target risk budgets with a 99.5% probability are very small (15.05% for δ = 15% and 20.05% for δ = 

20%), which shows that our benchmarks can be implemented with actively managed equity proxies. 

Our experiment also reveals that for TE = 6%; the violations disappear as soon as 1%α ≥ . Obviously, 

in investment practice, tracking error is not as well behaved as in our controlled experiment. In 

particular, one expects the ex-post realized tracking error to vary in time, and to exhibit extreme 

values in some market conditions. Our results suggest that an efficient control of tracking error that 

could maintain the Value-at-Tracking Error Risk (VaTER) around 6% would allow insurance companies 

to use the Solvency II benchmarks with actively managed equity proxies. While higher levels of 

tracking error would likely generate violations of the risk budget, such violations are not likely to be 

large in magnitude and frequent in probability.  

While pure added-value by active managers can naturally be represented by a process that is 

uncorrelated with the underlying benchmark, it can happen that the excess return over the 

benchmark has a positive correlation with the benchmark itself. This situation is intuitively less 

attractive than the zero correlation case, since it implies that negative outperformance of the active 

manager is to be expected on average when the underlying index performs poorly. To test for the 

impact of this feature on possible violations of the risk budget, we simulate in what follows the case 

of an active manager who generates excess returns that have a non-zero correlation, denoted by ρ, 

with the index. This leads to the following model for the actively managed returns: 

, , 2
, , ,

, , , ,
1

1   

where  (0,1) is independent from ,  and 
i i

S S
t t h t t hS S

t t h t t h t t hS
t

n
S S S

t t h t t h t t h t t h
i

r r
r r h TE h

h

N r r r

α ρ ρ ε
σ

ε

+ +
+ + +

+ + + +
=

  −
  → + + + −
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We can easily note that for ρ = 0, the returns have the same expression as before, i.e. when no 

correlation was modeled in the active management. In general, when ρ ≠0, we can also check that 

the added value by the manager has an annualized mean equal to α and a tracking error equal to TE, 

as before.  

Then, we use the weights computed with passive management (i.e. when α = TE = 0) and invest in an 

actively managed equity index. Table 9 below presents the case of an investment in a highly active 

manager (i.e. when α =2%, and TE = 4%) whose added value process exhibits a substantial positive 

correlation with the Global Russell equity index (ρ =50%). For simplicity, we focus on T=15 years, 

where the effects are likely to be most pronounced, since this is the situation where the investment 

in equities is the highest. 
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Table 9 

Backtest Results of the 15Y-Solvency II Benchmarks with High Correlated Portfolio Management 
This table displays the average annual performance over each 1Y-period from January 1997 up to the end of 2010. The 

dataset includes the Russell Global equity index in US Dollars (with high active portfolio management) and the 3-month US 

T-Bills. The high level of active portfolio management is simulated with an average α = 2% added value and a tracking error 

TE = 4%. The added value is also simulated with a ρ =50% correlation with the stock index returns. 
 

 δ=5% δ=10% δ=15% δ=20% 
Average Performance 6.95 % 10.24 % 12.62 % 13.85 % 

Max Loss at 99.5%
1
 4.89 % 9.86 % 14.85 % 19.83 % 

Max Loss
1
 5.26 % 10.57 % 15.93 % 21.12 % 

Proba of Violating Floor 0.11 % 0.14 % 0.19 % 0.16 % 

(1) The max losses have been computed in percentage of the initial asset value A0=100, and on a daily basis. 

 

As expected, we find that the max losses have also increased compared to the case with no 

correlation. This is explained by the fact that severe drawdowns of equity markets are amplified by 

the actively managed fund in the presence of a positive correlation ρ. On the other hand, we find 

that at the 99.5% level losses are still below the target risk budgets δ. We also find a small positive 

impact on the average performances since they increase 

Finally, we have maintained the assumption of a high correlation ρ = 50%,  set α = 0% so as to 

neutralize the benefits of active portfolio management in terms of expected performance, and 

increased the tracking error TE until we see the first constraint violations. The results of this 

numerical experiment give a tracking error of 2%, to be compared with a tracking error of 6% when 

the correlation was zero. 

 

Table 10 

Backtest Results of the 15Y-Solvency II Benchmarks with Poor Correlated Portfolio Management 
This table displays the average annual performance over each 1Y-period from January 1997 up to the end of 2010. The 

dataset includes the Russell Global equity index in US Dollars (with poor active portfolio management) and the 3-month US 

T-Bills. The poor level of active portfolio management is simulated with an average α = 0% added value and a tracking error 

TE = 2%. The added value is also simulated with a ρ =50% correlation with the stock index returns. 
 

 δ=5% δ=10% δ=15% δ=20% 
Average Performance 5.91 % 8.30 % 9.96 % 10.74 % 

Max Loss at 99.5%
1
 5.01 % 10.07 % 15.13 % 20.19 % 

Max Loss
1
 5.43 % 10.74 % 16.05 % 21.36 % 

Proba of Violating Floor 0.71 % 1.37 % 1.45 % 1.51 % 

(1) The max losses have been computed in percentage of the initial asset value A0=100, and on a daily basis. 

 

From table 10, we can note that active management that is highly correlated with the stock returns 

tends to amplify the max losses of the original index (passively managed), and needs therefore to 

exhibit high values of α in order to offset the negative impact of the correlation. These results 

suggest that the ability to identify active managers that are likely to generate a stable level of 

tracking error and also to generate pure alpha, as opposed to correlated abnormal performance, is a 

key source of added value when attempting to implement the Solvency II benchmarks with non-

passive vehicles. 
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5. Conclusion 

The Solvency II framework for regulatory capital makes investment in equities very costly. As a 

consequence of the high cost of investing in equity from a solvency capital requirement perspective, 

it is believed that insurance companies will almost exclusively end up investing in fixed-income 

securities, with a substantial associated opportunity cost related to almost entirely giving up on the 

equity risk premium. The purpose of this paper is to introduce a methodological framework to allow 

insurance companies to gain exposure to equity markets, and thus benefit from the associated risk 

premium, while maintaining their solvency capital expenditure at reasonable levels.  

From a conceptual standpoint, the dynamic investment strategy taking into account solvency 

constraints can be regarded as the replicating portfolio strategies for a contingent claim written on 

the underlying unconstrained strategy, in such a way that the underlying strategy is recovered as a 

specific case in the limit of vanishing solvency capital requirements. The design of the optimal 

investment strategy for an insurance company in the absence of short-term solvency constraints 

should therefore be the natural starting point. By continuity, any optimal investment solution in the 

presence of solvency constraints should formally converge to the optimal unconstrained long-term 

solution in the limit of vanishing solvency constraints.  

In implementation, we consider solvency constraints taken to be a series of monthly budget 

constraints, with a 12-month periodicity that is somewhat arbitrary, but that corresponds to the 

regulatory framework. The results obtained from numerical analysis based on both stochastic 

simulations and historical track records, confirm that Solvency II dynamic asset allocation 

benchmarks can be designed so as to allow for a more efficient use of the Solvency II risk budget. 

Intuitively, this is because the pre-commitment to reduce the allocation to equity in times and 

market conditions that require such a reduction so as to avoid over-spending Solvency II risk budgets, 

allows insurance companies to invest on average more into equities compared to a simple static 

strategy that is calibrated so as to respect the same Solvency II constraints. The welfare gains 

involved are found to be substantial for reasonable parameter values, and are relatively robust with 

respect to implementation constraints and the presence of tracking error risk. 
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Appendix 

Proof of proposition 1 

The static problem obtained with the minimax pricing kernel reads:  

 ( ) 0max s t
T

T T T
A

E U A E M A A   
     

, . . =  (A.1) 

The optimal payoff in (A.1) is obtained by writing the first-order optimality condition:  
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The time t -value of the optimal portfolio is then obtained by discounting the optimal payoff with the 

minimax pricing kernel:  
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 (A.2) 

It is reasonable to assume that the conditional expectation on the right side can only be written as a 

function of time, current interest rate and Sharpe ratio:  
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It remains to find the form for the function g . The process M A∗ ∗
 is a martingale, so its drift term 

must be zero:  
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 (A.3) 

Moreover, the volatility vector of A∗
 must be parallel to the unit volatility of the stock index 

Sρ . 

Introducing the matrix ( )'

4

S SN I ρ ρ= −  and applying Ito’s lemma to (A.2), we can write this 

condition as:  
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Substituting this back into (A.3), we obtain that g  must be a solution to the following partial 

differential equation (PDE):  
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The terminal condition is ( ), 1g T r λ, = . Conversely, if g  solves PDE (A.4) with that terminal 

condition, then the process ( ) ( )
11

, S
t t tM g t rγ λ

−∗ ,  follows a martingale, so that ( ), S
t tg t r λ,  is indeed 

equal to the conditional expectation at date t  of 
11

T tM M γ−∗ ∗ /  . This justifies ex-post our conjecture 

regarding the functional form of that conditional expectation.  

We now solve (A.4) for the function g . Given the affine structure of the model, a qualified guess for 

g  is the exponential of a function affine in r and quadratic in λ  (see Liu (2007):  
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If we substitute back the first- and second-order partial derivatives of g  into the right side of (A.4), 

we obtain a linear combination of 1, r , λ  and 
2λ  with deterministically time-dependent 

coefficients. This linear combination must be zero for each value of r  and λ , hence the four time-

dependent coefficients must be zero at all dates. Writing each of these conditions leads to the 

following system of four coupled ordinary differential equations (ODEs):  
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In these equations, we have set 
1 Sγ λ λ

γκ κ ρ σ−= − .  

The optimal portfolio policy is given by:  
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 is the volatility vector of A∗
. Applying Ito’s lemma in equation (A.2), we get that:  
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The indirect utility function is defined by:  
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Substituting the expression of the optimal payoff, we get that:  
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Table 11 

Stress-test Results of the Solvency II Benchmarks 
This table displays the performance and measure of risk of 16 Solvency II Benchmarks over a 1Y-period. Each of the first 

three panels corresponds to a different stress-test regime. The last panel combines all the different regimes together. 
 

Panel A: Low interest rate regime r0=1% 
  δ=5% δ=10% δ=15% δ=20% 

T=3Y 
Average Return 2.19 % 3.12 % 4.03 % 4.70 % 

Max Loss
 
at 99.5% 3.56 % 7.53 % 11.52 % 15.50 % 

T=5Y 
Average Return 2.39 % 3.50 % 4.56 % 5.32 % 

Max Loss
 
at 99.5% 3.92 % 8.23 % 12.55 % 16.86 % 

T=10Y 
Average Return 2.69 % 4.07 % 5.32 % 6.22 % 

Max Loss
 
at 99.5% 4.34 % 8.95 % 13.57 % 18.16 % 

T=15Y 
Average Return 2.81 % 4.31 % 5.63 % 6.59 % 

Max Loss
 
at 99.5% 4.46 % 9.16 % 13.90 % 18.61 % 

 

Panel B: High volatility regime σ0=25% 
  δ=5% δ=10% δ=15% δ=20% 

T=3Y 
Average Return 4.31 % 5.23 % 6.10 % 6.71 % 

Max Loss
 
at 99.5% 2.91 % 6.83 % 10.79 % 14.73 % 

T=5Y 
Average Return 4.54 % 5.64 % 6.65 % 7.36 % 

Max Loss
 
at 99.5% 3.36 % 7.62 % 11.93 % 16.17 % 

T=10Y 
Average Return 4.89 % 6.26 % 7.44 % 8.28 % 

Max Loss
 
at 99.5% 3.86 % 8.47 % 13.09 % 17.70 % 

T=15Y 
Average Return 5.04 % 6.51 % 7.77 % 8.66 % 

Max Loss
 
at 99.5% 4.04 % 8.71 % 13.44 % 18.19 % 

 

Panel C: Low Sharpe ratio regime λ0=25% 
  δ=5% δ=10% δ=15% δ=20% 

T=3Y 
Average Return 3.76 % 4.25 % 4.74 % 5.11 % 

Max Loss
 
at 99.5% 2.46 % 6.11 % 9.79 % 13.49 % 

T=5Y 
Average Return 3.90 % 4.50 % 5.09 % 5.53 % 

Max Loss
 
at 99.5% 2.99 % 7.09 % 11.13 % 15.16 % 

T=10Y 
Average Return 4.13 % 4.89 % 5.63 % 6.16 % 

Max Loss
 
at 99.5% 3.61 % 8.06 % 12.51 % 16.99 % 

T=15Y 
Average Return 4.22 % 5.06 % 5.85 % 6.44 % 

Max Loss
 
at 99.5% 3.82 % 8.42 % 13.01 % 17.57 % 

 

Panel D: Combination of the 3 regimes 
  δ=5% δ=10% δ=15% δ=20% 

T=3Y 
Average Return 1.69 % 2.17 % 2.65 % 3.05 % 

Max Loss
 
at 99.5% 3.26 % 6.93 % 10.62 % 14.32 % 

T=5Y 
Average Return 1.81 % 2.39 % 2.98 % 3.44 % 

Max Loss
 
at 99.5% 3.67 % 7.75 % 11.81 % 15.85 % 

T=10Y 
Average Return 1.99 % 2.73 % 3.47 % 4.04 % 

Max Loss
 
at 99.5% 4.13 % 8.62 % 13.07 % 17.52 % 

T=15Y 
Average Return 2.07 % 2.88 % 3.68 % 4.29 % 

Max Loss
 
at 99.5% 4.28 % 8.89 % 13.48 % 18.09  

 

(1) The max losses have been computed in percentage of the initial asset value A0=100, and on a daily basis. 
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