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Abstract

The crisis that affected financial markets in the last years, leaded market practitioners to

revise well known basic concepts like the ones of discount factors and forward rates. A single

yield curve is not sufficient any longer to describe the market of interest rate products. On the

other hand, using different yield curves at the same time, requires a reformulation of most of

the basic assumptions made.

We investigate how this approach of using different yield curves for discounting and forward-

ing is used to price a specific interest rate product, the Constant Maturity Swap (CMS). CMS

are money market instruments whose valuation requires the use of a convexity adjustment.

The standard convexity adjustment is derived under the assumption that the term structure

of interest rates is flat and has only parallel shifts. We develop a new convexity adjustment

for the case when the term structure may tilt, under the new framework of different curves.

We calibrate CMS spreads to market data and compare our adjustments with the SABR CMS

adjustment widely used in the market.



1 Introduction

Since the beginning of the financial crisis in August 2007, the money markets have exhibited

unprecedented behaviour. Interest rates, like for instance OIS and deposit rates with the same

maturity, or swap rates with the same tenor but based on different floating-leg frequencies,

that previously had been following each other closely for a long time, have started to keep

a significant distance apart. Another example is the Forward Rate Agreement (FRA), which

before crisis, could be replicated by long and short positions in two deposits, with the implied

forward rate differing only slightly from the corresponding quantity obtained through OIS

rates, now is quoted with large non-negligible spreads. This divergence in values does not

create arbitrage opportunities when credit or liquidity issues are taken into account, which

means that the market is pricing in other risks such as counterparty and liquidity risks.

In this paper, we will assume that the discount curve coincides with that stripped from OIS

swap rates. Since OIS rates can be regarded as the best available proxy for risk neutral rates,

this is equivalent to assume zero counterparty risk in the market plain vanilla instruments.

Since an overnight rate refers to lending for an extremely short period of time, it is assumed

to incorporate negligible credit or liquidity risk. Furthermore, there is very little default risk

in the OIS market because there is no exchange of principal; funds are exchanged only at the

maturity of the contract, when one party pays the net interest obligation to the other.

Before the onset of the turmoil in the credit markets in August 2007, the Libor-OIS spread

was so little (below 10 bp) that it was acceptable consider both quotes risk free. When the

spread grows, OIS is definitely a better approximation for a riskless rate, as confirmed by OIS

rates being lower than Libor, since in times of stress, the Libor, referencing a cash instrument,

reflects both credit and liquidity risk. It is therefore becoming frequent among financial players

to use the OIS swap curve to build a riskless term structure.

Historically, the spread has been around 10bp (for the period 01/2006− 07/2007), however

in just over a month, the spread rose to 62 bp on 14/09/2007, when the Bank of England

announced emergency funding to rescue the troubled Northern Rock, one of the UK’s largest
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mortgage lenders. The spread reached its all time high at 82 bp on 14/12/2007. Around the

same time, large investment banks such as UBS and Lehman Brothers announced huge write

downs. On 17/03/2008 the collapse of Bear Sterns led to a 74 bp spread. In the latest illiquidity

wave following the failure of Lehman Brothers, the spread was 222 bp (as of 10/10/2008).

Figure 1: 6M LIBOR-OIS Spread

Figure 2: LIBOR-OIS Spreads

This discrepancy of values immediately raised issues in the construction of zero-coupon

curves, which clearly, could no longer be based on traditional bootstrapping procedures. The

assumption of a unique yield curve has been forsaken by practitioners, who seem to agree on

an empirical approach based on the construction of as many curves as possible rate tenors.

For each given contract, they select a specific discount curve, which they use to calculate the
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net present value (NPV) of the contract’s future payments, consistently with the contract’s

features and the counterparty in question. They then build as many forward LIBOR curves

as given market tenors. With this approach, future cash flows are generated by the curves

associated with the underlying rate tenors and their NPV is calculated through the selected

discount curve.

The valuation of interest rate derivatives under different curves, for generating future rates

and for discounting has received a lot of attention in the financial literature recently. Previous

works that started to deal with these issues, mainly concerning the valuation of cross currency

swaps, are Boenkost and Schmidt (2005), Kijima et.al.(2009) and Henrard (2009). Bianchetti

(2009), was the first to apply the methodology to the single currency case, while Chibane

and Sheldon (2009) propose methods to extend yield curve bootstrapping to a multi-curve

setting. In terms of new pricing models, Kijima et.al. (2009) and Mercurio (2009,2010) apply

the method using a stochastic volatility LMM, in order to price calets and swaptions, while

Pallavicini and Tarenghi (2010), apply the new framework under the HJM model.

We follow the approach proposed by Mercurio (2010), to show how it can be used in

practice when pricing other interest rate products starting from the constant maturity swap

(CMS). CMS is a common money market product whose valuation is challenging. A standard

approach to their valuation involves the calculation of a convexity adjustment. Unfortunately

the convexity adjustment cannot be computed exactly and a number of assumptions and

approximations have to be made. The chief of these are that the term structure of interest

rates is flat, and may deform only through parallel shifts.

Following Hagan (2003), we apply the old convexity adjustment under the new framework of

double curving. We also develop a new convexity adjustment, by assuming that term structure

is not flat and may tilt. The new convexity adjustment is significantly larger than the old one

and gives better fit to the market’s CMS spread price.
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2 Definitions and Notation

We assume, we are using two curves, one for the discounting, say curve ”D”, and one for the

forwarding, say curve ”F”.

Forward rates can be defined for both curves. For each curve, the (simply compounded)

forward rate prevailing at time t and applied to the future time interval [T, S], with t ≤ T < S,

is defined by:

F (t;T, S) =
1

τ(T, S)

[
B(t, T )

B(t, S)
− 1

]
(1)

where τ(T, S) is the year fraction for the interval [T, S], and B(t, T ) and B(t, S) are the discount

factors (equivalently, zero coupon bond prices) at time t for maturities T and S.

We assume we are given a single discount curve to be used in the calculation of all NPVs,

i.e. for discounting all future cash flows. This curve is assumed to be the OIS zero-coupon

curve, stripped from market OIS swap rates and is defined for every possible maturity T :

T → BD(0, T ) = BOIS(0, T ) where we denote by BD(t, T ) the curve ”D” discount factor at

time t for maturity T . All pricing measures we will consider are those associated to the OIS

discount curve ”D”.

2.1 Definition of FRA and its properties

Definition 2.1. Consider times t, T1, T2, with t ≤ T1 < T2. The time-t FRA rate FRA(t;T1, T2)

is defined as the fixed rate to be exchanged at time T2 for the LIBOR rate L(T1, T2), so that

the swap has zero value at time t.

We denote by QT
D, the T-forward measure with numeraire the zero coupon bond BD(t, T ).

So, by (risk-adjusted) no-arbitrage pricing, we immediately have:

FRA(t;T1, T2) = ET2D [L(T1, T2)|Ft] (2)

where ET2D denotes expectation under the T2-forward measure QT2
D and Ft denotes the ’infor-
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mation’ available in the market at time t.

Proposition 1. Any simple compounded forward rate spanning a time interval ending in T ,

is a martingale under the T -forward measure. i.e.

F (u;S, T ) = ET [F (t;S, T )|Fu] (3)

for: 0 ≤ u ≤ t ≤ S < T

In the classic single-curve valuation, i.e. when the LIBOR curve corresponding to tenor

(T2 − T1) coincides with the discount curve (i.e. curves ”F” and ”D” are the same), the FRA

rate FRA(t;T1, T2) coincides with the forward LIBOR rate.

FX(t;T1, T2) =
1

T2 − T1

[
BD(t, T1)

BD(t, T2)
− 1

]
= ET2D [L(T1, T2)|Ft] (4)

In fact, the spot LIBOR rate L(T1, T2) can be defined by the classic relation:

L(T1, T2) =
1

T2 − T1

[
1

BD(T1, T2)
− 1

]
= FX(T1;T1, T2) (5)

and FRA rate can be written as:

FRA(t;T1, T2) = ET2D [FX(T1;T1, T2)|Ft] (6)

But by proposition 2.1, FX(t;T1, T2) is a martingale under QT2
D , i.e. FX(t;T1, T2) = ET2D [L(T1, T2)|Ft],

and we conclude that: FRA(t;T1, T2) = FX(t;T1, T2).

In our dual-curve setting, however, eq.5 does not hold anymore, since the simply com-

pounded rates defined by the discount curve are different, in general, from the corresponding

LIBOR fixings.

The forward rate FX(t;T1, T2) is NOT a martingale under the forward measure QT2
D , and

the FRA rate FRA(t;T1, T2) 6= FX(t;T1, T2).

Therefore, the present value of a future LIBOR rate is no longer obtained by discounting
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the corresponding forward rate, but by discounting the corresponding FRA rate.

According to Mercurio (2010), the FRA rate is the natural generalization of a forward rate

to the dual-curve case.

2.2 Definition of IRS

We show how to value an interest rate swap under the assumption of distinct forward and

discount curves. For simplicity, we assume that IRS tenors for fixed and floating legs are the

same (e.g. 6m).

Let us consider a set of reset dates {Ti}i=0,...,n, with Ti < Ti+1 and set δi = Ti+1 − Ti.

The time-t value (t ≤ T0) of the floating leg payoff can be obtained by taking the discounted

expectation under the forward measure QTi+1

D :

FloatingLeg = δiBD(t, Ti+1)E
Ti+1

D [L(Ti, Ti+1)|Ft] (7)

Defining the time-t FRA rate as the fixed rate to be exchanged at time Ti+1 for the floating

payment, so that the swap has zero value at time t. i.e.

FRA(t;Ti, Ti+1) = E
Ti+1

D [L(Ti, Ti+1)|Ft] (8)

So, the floating leg is written as:

FloatingLeg = δiBD(t, Ti+1)FRA(t;Ti, Ti+1) (9)

Therefore, the present value of the swap’s floating leg is simply given by summing the values

of simple payments, i.e:

FloatingLeg =

n−1∑
i=0

δiBD(t, Ti+1)FRA(t;Ti, Ti+1) (10)
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Let’s consider now the swap’s fixed leg and denote by K the fixed rate payment on the

fixed legs’ dates {Ti}i=1,...,n (since we have assumed that both legs have the same tenors).

The present value of these payments is obtained by discounting them with the discount

curve ”D”:

FixedLeg =

n−1∑
i=0

δiKBD(t, Ti+1) = K

n−1∑
i=0

δiBD(t, Ti+1) (11)

Therefore the IRS value to the fixed rate payer is given by:

IRS(t,K;Ti) =

n−1∑
i=0

δiBD(t, Ti+1)FRA(t;Ti, Ti+1)−K
n−1∑
i=0

δiBD(t, Ti+1) (12)

We can now calculate the corresponding forward swap rate as the fixed rate K that makes

the IRS value equal to zero at time t:

Si(t) =

∑n−1
i=0 δiBD(t, Ti+1)FRA(t;Ti, Ti+1)∑n−1

i=0 δiBD(t, Ti+1)
(13)

This is the forward swap rate of an IRS where cash flows are generated through curve ”F”

and discounted with curve ”D”.

2.3 Definition of Constant Maturity Swap

A constant maturity swap (CMS) contract exchanges a swap rate with a certain time to

maturity c, against a fixed payment K. In a standard swap, we exchange a LIBOR against a

fixed payment. In the CMS, the floating rate is no longer a LIBOR, but a swap rate with a

certain time to maturity, denoted by c.

For t ≤ T , let BD(t, T ) denote the value at time t of the curve ”D” discount factor.

Let T = {Ti}i=0,...,n, with Ti < Ti+1, be a set of reset dates and set δi = Ti+1 − Ti. Write

BTi
t for BD(t, Ti). We also write STt for the value at time t ≤ T0 of the forward swap rate
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corresponding to the reset dates T :

STt =

∑n−1
i=0 δiB

Ti+1

t FRA(t;Ti, Ti+1)∑n−1
i=0 δiB

Ti+1

t

(14)

We shall assume that δi = δ is constant (i.e. 3m).

Let ti = {ti,j}j=0,...,c, be a set of associated reset dates, associated with the date Ti,

i = 0, . . . , n, with ti,0 ∈ [Ti, Ti+1] and ti,j − ti,j−1 = τ , with j = 1, . . . , c. (we suppose

τ = 6m)

We will suppose for simplicity that ti,0 = Ti, and we will set ∆ = δ/τ , with ∆ need not be

integral.

The forward swap rate of the ith IRS at time determined by ti, at time t ≤ ti,j−1 is Stit ≡ Sit :

Sit =

∑c
j=1 τBt(ti,j)FRA(t; ti,j−1, ti,j)∑c

j=1 τBt(ti,j)
(15)

where Bt(ti,j) = BD(t, ti,j)

Write t = {ti}i=0,...,n for the set of associated reset dates. t defines a CMS as follows: At

times Ti, i = 1, . . . , n, the two counterparties to the CMS, A and B, exchange cashflows:

A pays B: δLi−1
Ti−1

+ δXt

B pays A: δSi−1
Ti−1

where:

LT i−1
i−1

, is the δ spot LIBOR rate applied to a δ period [Ti−1, Ti]

ST i−1
i−1

, is the τ spot Swap rate applied to a δ period [Ti−1, Ti]

Xt, is the CMS premium (spread), a constant chosen so that the cost of the instrument at

time t, when the contract is initiated, is zero.

Xt cannot be computed exactly. Usually an approximation is used, computed via a con-
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vexity adjustment, or a numerical method such as Monte Carlo.

The cashflow pi at time Ti to a CMS is:

pi = δ
[
Si−1
Ti−1
− Li−1

Ti−1
−Xt

]
(16)

where we suppose that the counterparty (say B) pays floating (i.e. LIBOR + Spread) and

receives fixed (i.e. the swap rate).

The time-t value, with t ≤ Ti−1, of the CMS can be obtained by taking the discounted ex-

pectation ETiD under the forward measure QTi
D corresponding to the numeraire BTi

t = BD(t, Ti).

So:

vTit = BTi
t δE

Ti
D

[
Si−1
Ti−1
− Li−1

Ti−1
−Xt

BTi
Ti

]
= BTi

t δE
Ti
D

[
Si−1
Ti−1
− Li−1

Ti−1
−Xt

]
(17)

But ETiD
[
Xt
]

= Xt, since Xt is a constant, and ETiD

[
Li−1
Ti−1

]
= FRA(t;Ti−1, Ti) is a martingale

under the forward measure QTi
D .

So, the time-t value of the CMS is given by:

vTit = BTi
t δ
(
ETiD

[
Si−1
Ti−1

]
− FRA(t;Ti−1, Ti)−Xt

)
(18)

A convexity adjustment is applied to the term ETiD

[
Si−1
Ti−1

]
.

Write Qti
D for the forward swap measure corresponding to the numeraire Bti

t =
∑c

j=1 τBt(ti,j)

(i.e. the denominator of the forward swap rate), under which, forward swap rate Sit is a

martingale.
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3 The Convexity Adjustment

Let M and N be numeraires, with corresponding martingale measures M and N. Suppose that

a process X is a martingale under M and that we want to calculate:

EN
t [XT ] = EN [XT |Ft] (19)

its expected future value under the non-martingale measure. Trivially,

EN
t [XT ] = EM

t [XT ] + CAt (20)

where the convexity adjustment CAt is

CAt = EN
t [XT ]− EM

t [XT ] (21)

The convexity adjustment is simply the difference in expectation of some quantity when the

expectations are computed under two different measures (see Pelsser (2003)).

Changing numeraire in the first term

CAt = EM
t

[
XT

NT /Nt

MT /Mt

]
− EM

t [XT ] = EM
t

[
XT

(
NT /Nt

MT /Mt
− 1

)]
(22)

We apply this in our case. So, the expectation ETiD

[
Si−1
Ti−1

]
we want to calculate can be

written as an expectation which is a martingale under its measure plus an adjustment. So,

ETiD

[
Si−1
Ti−1

]
= E

ti−1

D

[
Si−1
Ti−1

]
+ CA

ti−1

t (23)

where, under the forward swap measure Qti
D, the forward swap rate is a martingale. So,

the convexity adjustment is simply the difference in expectation of some quantity when the
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expectations are computed under two different measures. i.e.

CA
ti−1

t = ETiD

[
Si−1
Ti−1

]
− Eti−1

D

[
Si−1
Ti−1

]
(24)

Suppose we have found the convexity adjustment CA
ti−1

t . Then, the current value of the

CMS is given by:

vTit = BTi
t δ
(
ETiD

[
Si−1
Ti−1

]
− FRA(t;Ti−1, Ti)−Xt

)
(25)

= BTi
t δ
(
E
ti−1

D

[
Si−1
Ti−1

]
+ CA

ti−1

t − FRA(t;Ti−1, Ti)−Xt
)

(26)

But Si−1
Ti−1

is a martingale under the forward swap measure Qti
D, which means that E

ti−1

D

[
Si−1
Ti−1

]
=

Si−1
t . So, the current value is given by:

vTit = BTi
t δ
[
Si−1
t + CA

ti−1

t − FRA(t;Ti−1, Ti)−Xt
]

(27)

and the present value of the CMS is given by:

vt =
n∑
i=1

vTit =
n∑
i=1

BTi
t δ
[
Si−1
t + CA

ti−1

t − FRA(t;Ti−1, Ti)−Xt
]

(28)

=

n∑
i=1

BTi
t δ
[
Si−1
t + CA

ti−1

t

]
−

n∑
i=1

δBTi
t FRA(t;Ti−1, Ti)−

n∑
i=1

BTi
t δX

t (29)

Since Xt is determined by the requirement that the CMS swap is a zero cost instrument, set

vt = 0, and so we have:

Xt =

∑n
i=1B

Ti
t δ
[
Si−1
t + CA

ti−1

t

]
−
∑n

i=1 δB
Ti
t FRA(t;Ti−1, Ti)∑n

i=1 δB
Ti
t

(30)

=

∑n
i=1B

Ti
t δ
[
Si−1
t + CA

ti−1

t

]
∑n

i=1 δB
Ti
t

−
∑n

i=1 δB
Ti
t FRA(t;Ti−1, Ti)∑n
i=1 δB

Ti
t

(31)
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=

∑n
i=1B

Ti
t δ
[
Si−1
t + CA

ti−1

t

]
∑n

i=1 δB
Ti
t

− STt (32)

The sole problem is thus to determine the convexity adjustment CA
ti−1

t .

From equations 22 and 24, we have:

CA
ti−1

t = E
ti−1

D

[
Si−1
Ti−1

(
BTi
Ti−1

/BTi
t

B
ti−1

Ti−1
/B

ti−1

t

− 1

)]
(33)

= E
ti−1

D

[
Si−1
Ti−1

(
BTi
Ti−1

BTi
t

B
ti−1

t

B
ti−1

Ti−1

− 1

)]
(34)

where
B
ti−1
t

B
ti−1
Ti−1

are the numeraires of the forward swap measure QtiD.

For i ∈ {1, . . . , n} define

Git =
BTi
t

B
ti−1

t

(35)

for 0 ≤ t ≤ Ti−1. Then we have,

CA
ti−1

t = E
ti−1

D

[
Si−1
Ti−1

(
GiTi−1

Git
− 1

)]
(36)

We approximate CA
ti−1

t by finding an approximation to Git.

We start by first deriving a well known expression for the convexity adjustment when the

term structure is flat and has only parallel shifts.

3.1 Flat term structure with parallel shifts

Suppose that the term structure is flat and has only parallel shifts. We represent its level using

a rate of tenor τ . Write rt for the value at time t of the tenor τ rate so that for t ≤ T

BT
t = (1 + τrt)

−(T−t)/τ (37)
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For t ≤ Ti−1 we have:

BTi
t = (1 + τrt)

− (Ti−t)
τ

B
Ti−1

t = (1 + τrt)
− (Ti−1−t)

τ

⇒ BTi
t

B
Ti−1

t

= (1 + τrt)
− (Ti−Ti−1)

τ = (1 + τrt)
− δ
τ (38)

So,

BTi
t =

1

(1 + τrt)
∆
B
Ti−1

t (39)

We also have:

B
ti,j
t = (1 + τrt)

−
(ti,j−t)

τ

BTi
t = (1 + τrt)

− (Ti−t)
τ

⇒ B
ti,j
t

BTi
t

= (1 + τrt)
−

(ti,j−Ti)
τ = (1 + τrt)

−j (40)

So,

B
ti,j
t =

1

(1 + τrt)
j
BTi
t (41)

for j = 0, . . . , c

Then, for t ≤ Ti−1:

Bti
t =

c∑
j=1

τB
ti,j
t =

c∑
j=1

τ
1

(1 + τrt)
j
BTi
t (42)

But:

c∑
j=1

τ
1

(1 + τrt)
j

=
τ

1 + τrt

[
1 +

(
1

1 + τrt

)
+

(
1

1 + τrt

)2

+ . . .+

(
1

1 + τrt

2
)c−1

]
(43)

=
τ

1 + τrt

1−
(

1
1+τrt

)c
1−

(
1

1+τrt

)
 =

1

rt

[
1− 1

(1 + τrt)
c

]
(44)

So,

Bti
t = BTi

t

1

rt

[
1− 1

(1 + τrt)
c

]
(45)

The forward swap rate is written as:

Sit =

∑c
j=1 τBt(ti,j)FRA(t; ti,j−1, ti,j)∑c

j=1 τBt(ti,j)
(46)
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But, since we suppose to have a flat term structure, the forward rate FRA(t; ti,j−1, ti,j), does

not depend on j (i.e. constant), and so goes out of the summation. So, under this assumption,

the forward swap rate is given by:

Sit =
c∑
j=1

WjFRA(t; ti,j−1, ti,j) = Rt (47)

with:

Wj =
Bt(ti,j)∑c
j=1Bt(ti,j)

(48)

where Rt is supposed to be the risky rate.

So, since Rt is a risky rate, following Liu et.al. (2006), we can assume that is equal to a

risk-free rate rt (e.g. OIS rate) plus a spread Xt. So, we can assume that the forward swap

rate is written as:

Sit = Rt = rt +Xt (49)

where the spread Xt, represents the credit or liquidity risk of the counterparty.

3.1.1 The first approximation

Putting together equations 39 and 45, we get an expression for Git that depends on t only via

rt. In fact, Git = G(rt) where:

G(r) =
r

(1 + τr)∆

1

1− 1
(1+τr)c

(50)

So, Git is given by:

Git =
BTi
t

B
ti−1

t

=
B
Ti−1

t (1 + τr)−∆

B
Ti−1

t
1
rt

[
1− 1

(1+τrt)
c

] =
rt

(1 + τrt)
∆

1

1− 1
(1+τrt)

c

= G(rt) (51)
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So far no approximation has been made. To progress, a Taylor series expansion is made on G.

So, a first order Taylor expansion of G at rt gives:

G(r) ≈ G(rt) +G′(rt)(r − rt)⇒
G(r)

G(rt)
− 1 =

G′(rt)

G(rt)
(r − rt) (52)

Assuming that rTi−1 is a perturbation of rt, and since:

GiTi−1

Git
− 1 =

G(rTi−1)

G(rt)
− 1 ≈ G′(rt)

G(rt)
(rTi−1 − rt) (53)

=
G′
(
Si−1
t −Xt

)
G(Si−1

t −Xt)

[
Si−1
Ti−1
−XTi−1 − S

i−1
t +Xt

]
(54)

So, the convexity adjustment can now be approximated as:

CA
ti−1

t = E
ti−1

D

[
Si−1
Ti−1

(
GiTi−1

Git
− 1

)]
(55)

= E
ti−1

D

[
Si−1
Ti−1

G′
(
Si−1
t −Xt

)
G(Si−1

t −Xt)

[
Si−1
Ti−1
−XTi−1 − S

i−1
t +Xt

]]
(56)

=
G′
(
Si−1
t −Xt

)
G(Si−1

t −Xt)
E
ti−1

D

[(
Si−1
Ti−1

)2
− Si−1

Ti−1

(
Si−1
t +XTi−1 −Xt

)]
(57)

=
G′
(
Si−1
t −Xt

)
G(Si−1

t −Xt)

[
E
ti−1

D

[(
Si−1
Ti−1

)2
]
− Eti−1

D

[
Si−1
Ti−1

XTi−1

]
−
(
Si−1
t

)2
+
(
Si−1
t Xt

)]
(58)

=
(
Si−1
t

)2 G′ (Si−1
t −Xt

)
G(Si−1

t −Xt)

Eti−1

D

(Si−1
Ti−1

Si−1
t

)2
− 1

−(Eti−1

D

[
Si−1
Ti−1

XTi−1(
Si−1
t

)2
]
− Xt

Si−1
t

)
(59)

It is easy to find an expression for
G′(Si−1

t −Xt)
G(Si−1

t −Xt)
. In fact:

G′(r)

G(r)
=

1

r
θ(r) (60)

where:

θ(r) =
1

1 + τr

(
1 + (τ − δ)r − cτr

(1 + τr)c − 1

)
(61)
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So, replacing, the convexity adjustment is given by:

CA
ti−1

t ≈
(
Si−1
t

)2
Si−1
t −Xt

θ
(
Si−1
t −Xt

)Eti−1

D

(Si−1
Ti−1

Si−1
t

)2
− 1

−(Eti−1

D

[
Si−1
Ti−1

XTi−1(
Si−1
t

)2
]
− Xt

Si−1
t

)
(62)

3.1.2 The second approximation

We need to calculate E
ti−1

D

[(
Si−1
Ti−1

)2
]

and E
ti−1

D

[
Si−1
Ti−1

XTi−1

]
. We assume that under the

measure Q
ti−1

D the two processes (i.e. swap rate and spread), are martingales and are of the

form:

dSi−1
t = σi−1

t,s S
i−1
t dW i−1

t,s (63)

dXt = σt,xXtdWt,x (64)

where W i−1
t,s and Wt,x are two correlated wiener processes with correlation ρi−1 and σi−1

t,s and

σt,x are deterministic volatilities.

Applying Ito’s Lemma, the two expectations are given as:

E
ti−1

D

[(
Si−1
Ti−1

)2
]

=
(
Si−1
t

)2
exp

((
σi−1
t,s

)2
(Ti−1 − t)

)
(65)

E
ti−1

D

[
Si−1
Ti−1

XTi−1

]
= Si−1

t Xt exp
(
ρi−1σi−1

t,s σt,x (Ti−1 − t)
)

(66)

3.1.3 The convexity adjustment

Putting everything together, we arrive at the following expression for the convexity adjustment:

CA
ti−1

t ≈
(
Si−1
t

)2
Si−1
t −Xt

θ
(
Si−1
t −Xt

) [(
e(σ

i−1
t,s )

2
(Ti−1−t) − 1

)
− Xt

Si−1
t

(
eρ
i−1σi−1

t,s σt,x(Ti−1−t) − 1
)]

(67)
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Note that
(
Si−1
t −Xt

)
θ
(
Si−1
t −Xt

)
= rtθ(rt) does not depend on i. Hence, the final expres-

sion for CA
ti−1

t , with the same form for all i, is:

CA
ti−1

t = K(rt)

[(
e(σ

i−1
t,s )

2
(Ti−1−t) − 1

)
− Xt

Si−1
t

(
eρ
i−1σi−1

t,s σt,x(Ti−1−t) − 1
)]

(68)

with

K(rt) =
(Si−1
t )2

rt

1

1 + τrt

(
1 + (τ − δ)rt −

cτrt
(1 + τrt)c − 1

)
(69)

As we can easily understand, by assuming that the there is no spread in the market, i.e.

Xt = 0, we end up with the well-known formula proposed by Hagan (2003).

3.2 A term structure with tilts

We introduce a new convexity adjustment by extending the analysis of the previous section to

the case when the term structure may tilt.

For t ≤ T we write:

BT
t =

(
1 + τrTt

)−(T−t)/τ
(70)

where rTt is the spot rate at time t for BT
t compounded with tenor τ . We no longer assume the

term structure is flat. Instead, we assume it is given by some deterministic function f . Write:

rTt = f(rt, t, T | a) (71)

where rt is the short rate and a = (a1, . . . , ak) is some vector of parameters.

For i ∈ {1, . . . , n}, we define as before:

Git =
BTi
t

B
ti−1

t

(72)
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for 0 ≤ t ≤ Ti−1. Then we have,

CA
ti−1

t = E
ti−1

D

[
Si−1
Ti−1

(
GiTi−1

Git
− 1

)]
(73)

But from equations (42) and (69) we have that:

BTi
t =

(
1 + τrTit

)− (Ti−t)
τ

B
ti−1

t =
∑c

j=1 τB
ti,j
t =

∑c
j=1 τ

(
1 + τr

ti,j
t

)− (ti,j−t)
τ

⇒ (74)

⇒ Git =
BTi
t

B
ti−1

t

=

(
1 + τrTit

)− (Ti−t)
τ

∑c
j=1 τ

(
1 + τr

ti,j
t

)− (ti,j−t)
τ

=

(
1 + τf it (rt)

)− (Ti−t)
τ

∑c
j=1 τ

(
1 + τf i,jt (rt)

)− (ti,j−t)
τ

(75)

where we have written f it (rt) for rTit = f(rt, t, Ti) and f i,jt (rt) for r
ti,j
t = f(rt, t, ti,j).

Now fix i and for t ≤ Ti−1 define:

G(r, t) =

(
1 + τf it (r)

)− (Ti−t)
τ

∑c
j=1 τ

(
1 + τf i,jt (r)

)− (ti,j−t)
τ

(76)

so that Git = G(rt, t).

As before, we find an approximation of the convexity adjustment by using a Taylor expan-

sion of G(r, t).

A first order Taylor expansion of G at (rt, t) gives:

G(rTi−1 , Ti−1) ≈ G(rt, t) +Gr(rt, t)(rTi−1 − rt) +Gt(rt, t)(Ti−1 − t) (77)

where here Gr and Gt denote the partial derivatives of G with respect to r and t. Hence:

GiTi−1

Git
− 1 =

G(rTi−1 , Ti−1)

G(rt, t)
− 1 ≈ Gr(rt, t)

G(rt, t)
(rTi−1 − rt) +

Gt(rt, t)

G(rt, t)
(Ti−1 − t) (78)
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In the previous case we had Sit = Rt. In the current case, where we are not assuming that the

term structure is flat, we assume as approximations that Sit ≈ Rt and SiTi−1
≈ RTi−1 . With

these assumptions, we have:

Si−1
Ti−1

(
GiTi−1

Git
− 1

)
≈ Si−1

Ti−1

[
Gr(rt, t)

G(rt, t)
(rTi−1 − rt)

]
+ Si−1

Ti−1

[
Gt(rt, t)

G(rt, t)
(Ti−1 − t)

]
(79)

Substituting back into (72),

CA
ti−1

t ≈ Eti−1

D

[
Si−1
Ti−1

Gr(rt, t)

G(rt, t)
(rTi−1 − rt)

]
+ E

ti−1

D

[
Si−1
Ti−1

Gt(rt, t)

G(rt, t)
(Ti−1 − t)

]
(80)

=
Gr(rt, t)

G(rt, t)
E
ti−1

D

[
Si−1
Ti−1

(
Si−1
Ti−1
−XTi−1 − S

i−1
t +Xt

)]
+
Gt(rt, t)

G(rt, t)
E
ti−1

D

[
Si−1
Ti−1

(Ti−1 − t)
]

(81)

=
Gr(rt, t)

G(rt, t)

[
E
ti−1

D

[(
Si−1
Ti−1

)2
]
− Eti−1

D

[
Si−1
Ti−1

XTi−1

]
−
(
Si−1
t

)2
+
(
Si−1
t Xt

)]
+
Gt(rt, t)

G(rt, t)
Si−1
t (Ti−1−t)

(82)

=
(
Si−1
t

)2 Gr(rt, t)
G(rt, t)

Eti−1

D

(Si−1
Ti−1

Si−1
t

)2
− 1

−(Eti−1

D

[
Si−1
Ti−1

XTi−1(
Si−1
t

)2
]
− Xt

Si−1
t

)+
Gt(rt, t)

G(rt, t)
Si−1
t (Ti−1−t)

(83)

We need to calculate E
ti−1

D

[(
Si−1
Ti−1

)2
]

and E
ti−1

D

[
Si−1
Ti−1

XTi−1

]
. As before, we assume that

under the measure Q
ti−1

D the two processes (i.e. swap rate and spread), are martingales and

are of the form:

dSi−1
t = σi−1

t,s S
i−1
t dW i−1

t,s (84)

dXt = σt,xXtdWt,x (85)

where W i−1
t,s and Wt,x are two correlated wiener processes with correlation ρi−1 and σi−1

t,s and

σt,x are deterministic volatilities.

Applying Ito’s Lemma, the two expectations are given as:

E
ti−1

D

[(
Si−1
Ti−1

)2
]

=
(
Si−1
t

)2
exp

((
σi−1
t,s

)2
(Ti−1 − t)

)
(86)

E
ti−1

D

[
Si−1
Ti−1

XTi−1

]
= Si−1

t Xt exp
(
ρi−1σi−1

t,s σt,x (Ti−1 − t)
)

(87)
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So, the convexity adjustment is now given by:

CA
ti−1

t =
(
Si−1
t

)2 Gr(rt, t)
G(rt, t)

[(
e(σ

i−1
t,s )

2
(Ti−1−t) − 1

)
− Xt

Si−1
t

(
eρ
i−1σi−1

t,s σt,x(Ti−1−t) − 1
)]

+
Gt(rt, t)

G(rt, t)
Si−1
t (Ti−1 − t) (88)

Finally,we need to find expressions for the two partial derivatives Gr(r,t)
G(r,t) and Gt(r,t)

G(r,t) . In

fact, one can show that:

Gr(r, t)

G(r, t)
=
−(Ti − t)
1 + τf it (r)

∂f it
∂r

(r) +

∑c
j=1(ti,j − t)(1 + τf i,jt (r))−

ti,j−t
τ
−1 ∂f

i,j
t
∂r (r)∑c

j=1(1 + τf i,jt (r))−
ti,j−t
τ

(89)

Gt(r, t)

G(r, t)
=

1

τ
ln(1 + τf it (r))−

Ti − t
1 + τf it (r)

∂f it
∂r

(r)

−

∑c
j=1(1 + τf i,jt (r))−

ti,j−t
τ

(
1
τ ln(1 + τf i,jt (r))− ti,j−t

1+τf i,jt (r)

∂f i,jt
∂r (r)

)
∑c

j=1(1 + τf i,jt (r))−
ti,j−t
τ

(90)

To progress, we must specify f . We investigate the case:

f(r, t, T | a, b, k) = r + (a+ b(T − t))e−k(T−t) − a (91)

based on the well-known Nelson and Siegel functional form. Then we have:

∂f it
∂r

(r) =
∂f i,jt
∂r

(r) = 1 (92)

∂f it
∂t

(r) = (k(a+ b(Ti − t))− b)e−k(Ti−t) (93)

∂f i,jt
∂t

(r) = (k(a+ b(ti,j − t))− b)e−k(ti,j−t) (94)
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4 Smile-consistent Convexity Adjustment

In order to test our CMS convexity adjustments, we compare them with the smile-consistent

convexity adjustment, widely used in the market.

In presence of market smile, when the term structure is not flat, but may tilt, the adjustment

is necessarily more involved, if we aim to incorporate consistently the information coming from

the quoted implied volatilities. The procedure to derive a smile consistent convexity adjustment

is described in Mercurio and Pallavicini (2006),and is the one we will use here.

The expectations of the swap rates ETiD

[
Si−1
Ti−1

]
, are evaluated, under the discounting for-

ward measure QTiD , by using the SABR model according to market practice.

The second moment of Si−1
Ti−1

can be replicated exactly as follows:

E
ti−1

D

[(
Si−1
Ti−1

)2
]

= 2

∫ ∞
0

E
ti−1

D

[(
Si−1
Ti−1
−K

)+
]
dK (95)

= 2

∫ ∞
0

Black
(
K,Si−1

Ti−1
, VM (K)

)
dK (96)

where Black stands for the Black model.

For the consistent derivation of CMS convexity adjustment, volatility modelling is required.

We use the SABR model, which is a market popular choice for swaption smile analysis, for the

swap rate in order to infer from it the volatility smile surface to use for the integration above.

The SABR model assumes that Si−1
t evolves under the associated forward swap measure

Q
ti−1

D according to:

dSi−1
t = Vt(S

i−1
t )βdZi−1

t (97)

dVt = εVtdW
i−1
t (98)

V0 = α (99)
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Hagan et. al. (2002), derive the following approximation for the implied volatility of the

swaption with maturity Ti−1:

σimp(K,Si−1
t ) ≈ α

(Si−1
t K)

1−β
2

[
1 + (1−β)2

24 ln2
(
Si−1
t
K

)
+ (1−β)4

1920 ln4
(
Si−1
t
K

)] z

x(z)
(100)

·

{
1 +

[
(1− β)2α2

24(Si−1
t K)1−β

+
ρβεα

4(Si−1
t K)

1−β
2

+ ε2
2− 3ρ2

24

]
Ti−1

}
(101)

where,

z :=
ε

α
(Si−1
t K)

1−β
2 ln

(
Si−1
t

K

)
(102)

and

x(z) := ln

{√
1 + 2ρz + z2 + z − ρ

1− ρ

}
(103)

The above formula provides us with an efficient approximation for the SABR implied

vilatility for each strike K. Now, we can calculate the CMS convexity adjustment by:

CASABR(Si−1
t ; δ) = θ(Si−1

t )

(
2

(Si−1
t )2

∫ ∞
0

Black
(
K,Si−1

t , vimp(K,Si−1
t )

)
dK − 1

)
(104)

where,

vimp(K,Si−1
t ) := σimp(K,Si−1

t )
√
Ti−1 (105)

We consider a different SABR model for each swap rate contained in the CMS payoff and

we perform a calibration of all the SABR parameters (four parameters (α, β, ρ, ε) for each swap

rate) to swaption volatility smile and CMS spread quoted by the market. See Mercurio and

Pallavicini (2006) for a detailed description of the calibration procedure.
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5 Market Data

We used three data sets in this study, one containing Euro Money markets instruments for

the construction of the yield curves, CMS swap spreads with maturity 5 years, where the

associated underlying swaps have maturity 10 years (i.e. X5,10), and swaption volatilities for

different strikes, as well as implied Black ATM swaption volatilities. All market data were

collected from Bloomberg.

Data sets are presented in detail below:

• For the discounting curve, we use EONIA fixing, OIS from 3 months to 30 years.

• For the 3m curve, we use EURIBOR three-months fixing, FRA rates up to 15m, and

swaps from two to thirty years, paying an annual fix rate in exchange for the EURIBOR

3m rate.

• For the 6m curve, we use EURIBOR six-months fixing, FRA rates up to 2Y, and swaps

from two to thirty years, paying an annual fix rate in exchange for the EURIBOR 6m

rate.

The market quotes a value for the CMS spread which makes the CMS swap fair. However,

it quotes the spread only for few CMS swap maturities and tenors (usually 5,10,15,20,30 years).

In the Euro market, the CMS tenor is equal to three months, while the c-year IRS’s used as

indexation in the CMS has LIBOR payments of 6m or 1y frequency. Thus, CMS spreads

depend on three different curves in our framework; the funding curve used to discount the cash

flows of the CMS swap, which we consider to be the risk free curve (i.e. OIS curve); the 3m

forwarding curve for the EURIBOR rates payed in the second leg of the CMS; and the 6m (or

1y) forwarding curve for the EURIBOR rates payed by the indexation IRS.
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6 Numerical Calculations

We compare numerically the accuracy of the approximations for the CMS convexity adjust-

ments, against the Black and SABR models convexity adjustments presented above. Our

example is based on Euro data as of 03 February 2006.

We test a CMS with maturity 5 years (i.e. nδ = 5), where the associated underlying swaps

have maturity 10 years (i.e. cτ = 10).

The closing price for the CMS spread with maturity 5 years, and associated underlying

swaps with maturity 10 years, is X5,10 = 64.9 bps. The ATM swaption volatility is σATM5,10 =

0.15, and swaption volatilities for different strikes are given below.

Expiry Tenor -200 -100 -50 -25 25 50 100 200

5y 10y 6.54% 2.30% 0.93% 0.41% -0.30% -0.51% -0.68% -0.39%

For the parameters of the term structure in case 2, we choose the values: (a, b, k) =

(0.01, 0.002, 0.1). Finally, when we apply the case with the spread, we assume that the spread

is constant Xt = 100 bps, while its volatility is σt,x = o.1, and the correlation ρs,x = 0.9.

Our results are summarized in the following tables:

Market Case 1 Case 2 SABR

Price 0.00649 0.006237 0.006402 0.006406

Difference (in bps) 2.53 0.89 0.83

Table 1: Prices of CMS spread for cases 1 and 2, and difference (in bps) between market and
models - No spread

Market Case 1 Case 2 SABR

Price 0.00649 0.006352 0.0065001 0.006406

Difference (in bps) 1.38 0.1 0.83

Table 2: Prices of CMS spread for cases 1 and 2, and difference (in bps) between market and
models - when spread is incorporated
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i CA (case 1) CA (case 2) CA (case 1 - with spread) CA (case 2 - with spread)

1 0.000036 0.000032 0.000037 0.000033
2 0.000074 0.000083 0.000076 0.000092
3 0.000114 0.000198 0.000116 0.000218
4 0.000154 0.000313 0.000158 0.000343
5 0.000196 0.000428 0.000201 0.000469
6 0.000238 0.000542 0.000245 0.000593
7 0.000282 0.000656 0.000289 0.000718
8 0.000326 0.000769 0.000335 0.000842
9 0.000373 0.000883 0.000383 0.000967
10 0.000420 0.000995 0.000431 0.001090
11 0.000468 0.001107 0.000480 0.001213
12 0.000514 0.001216 0.000528 0.001334
13 0.000564 0.001326 0.000579 0.001455
14 0.000615 0.001436 0.000631 0.001576
15 0.000667 0.001544 0.000685 0.001697
16 0.000721 0.001652 0.000739 0.001817
17 0.000775 0.001759 0.000795 0.001936
18 0.000831 0.001865 0.000852 0.002054
19 0.000888 0.001970 0.000911 0.002172
20 0.000946 0.002074 0.000970 0.002289

Table 3: Convexity adjustments for cases 1 and 2, with and without spread

7 Conclusions

We have developed a new CMS convexity adjustment by using different curves for discounting

and forwarding. In the first case, the adjustment is derived under the assumption that the

term structure of interest rates is flat and has only parallel shifts, while in the second case,

the term structure may tilt. In both cases we have incorporated the spread between the

OIS (discounting) curve and the swap (forwarding) curve, where we assume it to be flat and

constant.

Compared to the first case, in the second case, the approximation has an additional term

that depends upon the slope parameter b.

We have calibrated both convexity adjustments to real market data, by using swaption

volatilities, and calculated the difference between market and model CMS spread. We com-

pared our results with the smile-consistent CMS adjustment using the SABR model, which is
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the market practice.

The second convexity adjustment is significantly larger than the first one.

In terms of the pricing of the CMS spread, we obtain a very good fit of market quotes

in all cases. Especially when we use the convexity adjustment of case 2 (i.e. when the term

structure tilts) and incorporate a constant spread, the quality of the fit is very good (∼ 0.1

bps) difference from the market price.

We aim to test our convexity adjustments to CMS spreads with longer maturities (i.e. 15

or 20 years), as well as for a bigger data sample, so that we can make a safe conclusion as to

whether the CMS market, prices in a single or multi curve framework. We also aim to use

historical volatility for the spread as well as the correlation.

Finally, the convexity adjustments we proposed can also be tested by trying to compute

the true value of the convexity adjustment by simulation.
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