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Abstract 

 

The research aim has been to further investigate the structure of freight rate volatility. 

This paper examines the use of the FIGARCH, as well as other GARCH-type models, 

namely the standard GARCH and the IGARCH models. The best model was then 

selected on the basis of their Value-at-Risk. The models were estimated and then 

tested using weekly spot freight rate data, between 6 January 1989 and 29 December 

2006, for VLCC, Suezmax and Aframax tankers, as well as for Capesize and 

Panamax bulk-carriers. 
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AN INVESTIGATION INTO THE CORRECT 

SPECIFICATION FOR VOLATILITY IN THE 

SHIPPING FREIGHT RATE MARKETS 
 

 

1 INTRODUCTION 
 

The aim of the research is to expand on the traditional models of freight rate volatility 

through the use of FI-GARCH models, and to propose finalisation on the debate 

regarding the structure of freight rate volatility, a crucial issue in the shipping 

industry, since if one can accurately forecast this, then one is effectively minimising 

risk exposure.  

 

In addition, it is worth considering this methodology in other markets as well as 

shipping freight rate markets (perhaps the only financial market in which the good 

being provided is a service), as the modelling of freight rate volatility can be readily 

applied to other markets in which real assets are traded.  In the shipping market, 

freight rates play a pivotal role, and form the basis of almost every function, from the 

determination of the price of the transport service through to the price of second-hand 

vessels. Therefore, a correct model for freight rate volatility is vital for all participants 

in the shipping market, from the ship-owners and charterers themselves, right down to         

ship-brokers, maritime lawyers and other auxiliary parties. This follows because, by 

reducing the risk exposure of the ship owners, one is passing that risk reduction down 

the line to the ancillary parties concerned.  

 

Therefore, any model that can accurately forecast freight dynamics and volatility, and 

then the transition between periods of increasing and decreasing dynamics and 

volatility, will be of significant value. 

 

We argue that freight rates are not non-stationary. The rationale behind this statement 

is that, although the demand for shipping services is inelastic, if freight rates reach 

really high levels then substitutes, such as air transport, become more attractive and 

charterers will take advantage of these. On the reverse side, if freight rates fall too 

low, then ship operators will either lay-up or scrap their vessels and seek their 

fortunes in other markets. We are further of the view that freight rates are also not 

stationary as there is a delay between the ordering and delivery of new vessels. As a 

result of this delay, the maximum supply of shipping services is fixed in the short-run 

and therefore prices may rise beyond the upper level indicated by a stationary process. 

 

We investigate further whether freight rates and second-hand prices follow a process 

that falls somewhere between the non-stationary and stationary process, i.e. they are 

fractionally integrated. For this reason, when looking at the issue of volatility, 

establishing long memory models, such as the Fractionally Integrated Generalised 

Autoregressive Conditional Heteroscedasticity (FI-GARCH) models, would be more 

appropriate.  
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In a review of the literature, traditional fundamentals models have suggested that 

freight rates are mean reverting (Hawdon (1978) and Beenstock and Vergottis 

(1989)). However, research in the 1990s (Berg-Andereassen (1996); Glen (1997) and 

Kavussanos and Nomikos (2003), et al) found that freight rates were not mean 

reverting but followed a random walk process, and therefore were non-stationary in 

levels. In contradistinction, the most recent research (Adland and Cullinane (2006) 

and Koekebakker, Adland and Sodal (2006)) propose that the original fundamentals 

models of Hawdon and Beenstock and Vergottis were in fact correct and that freight 

rates are stationary, and that contrary conclusions were as a result of the application of 

an incorrect test. We put forward, for the first time in a market in which real assets are 

traded, the proposal that the answer may in fact lie somewhere between the two rival 

conclusions, i.e. that freight rates are fractionally integrated. This makes sense as any 

diagram of freight rates over time will illustrate that the process looks to be mean 

reverting. However, as recent events have shown, the process is still capable of 

‘exploding’. In addition, there is a delay between the ordering and delivery of new 

vessels, where this would entail that although freight rates are mean-reverting in the 

long-run, the mean reversion process would occur with a lag. This is in essence the 

definition of a long memory, or fractionally integrated process. In order to distinguish 

between types of volatility models, we used the traditional approach of measuring the 

Value-at-Risk for each model, and then comparing the accuracy of these forecasts. 

 

Once again, if this hypothesis is true, it enables market participants to better forecast 

freight rate volatility, which in turn can lead to increased profits for market 

participants due to better investment-making capability and greater risk reduction. 

This can also have run-on effects on other markets, as most of the commodities traded 

in the world are transported by good. A better understanding of the transport costs 

involved enables charterers to better forecasts their costs and potentially pass on these 

cost-savings to other participants in other markets. Better forecasting of freight rates 

enables a better understanding of investment timing, which could then be applied to 

other markets in which real assets are traded. In addition to this, there are of course 

policy and decision making implications. 

 

In order to provide body to the hypotheses, section three of this document presents the 

methodologies applicable to the research question. Section four of the document 

presents the data as well as descriptive statistics. Section five examines the 

implementation of FI-GARCH models in the shipping markets and section six 

provides a conclusion. 

 

2 METHODOLOGY 
 

Engle (1982) provided the framework for the variety of ARCH-type models presented 

here through the development of the original ARCH model. This framework was 

extended by Bollerslev (1986) who presented the standard GARCH (p; q) model used 

in this paper, which is represented as follows: 

 

  ;  ~ 0;  1t t t tz h z N              (2.1) 

 

           2

t t th L L h                   (2.2) 
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In this model, L denotes the lag operator, hence 2

1 2

q

qL L L L  and 

2

1 2

p

pL L L L . In order to ensure the stability and covariance of the 

t
 process, all the roots of 1 L L  and 1 L  are constrained to lie 

outside the unit circle. One should note that in a GARCH (1; 1) model, the sum of 

1 1 and  reflects the persistence of any shocks to volatility (Baillie, Bollerslev and 

Mikkelsen (1996)). This model enables one to generate volatility forecasts which are 

comprised of the weighted average of the constant long-run, or average, variance, 

denoted , the previous forecasting variance, denoted ht, and the previous volatility 

reflecting the squared news about the return, denoted 2

t  (Kang, Kang and Yoon 

(2009)). This model could alternatively be expressed as an ARMA (m; p) process in 
2

t , where: 

 

        21 1t tL L L v            (2.3) 

 

In the expression above 2

1max ;   and t tm p q v h  is mean zero serially 

uncorrelated; thus, the 
tv  process may be readily interpreted as the ‘innovations’ for 

the conditional variance. 

 

The IGARCH model, developed by Engle and Bollerslev (1986), is an extension of 

the GARCH (1;1) in that instead of the squared innovations of the current conditional 

variance decaying exponentially, or in other words stating that shocks in volatility 

persist for a relatively short period, as is the case of the GARCH model, these shocks 

are believed never to die out, i.e. it is characterised by infinite memory. The IGARCH 

model may be represented as follows: 

 
21 1t tL L L v             (2.4) 

 

       
1 1 21 1 1 1t th L L L L            (2.5) 

 

In the expression above 
1

1 1L L L L  is of order m – 1, In 

addition, the autoregressive lag polynomial, 1 L L , contains a unit root and 

all the roots of  and 1L L  lie outside the unit root circle. 

 

The final extension to the ARCH model examined here is the FIGARCH model 

proposed by Baillie, Bollerslev and Mikkelsen (1996). This is simply obtained by 

replacing the first difference operator in expression (2.5) with the fractional difference 

operator, denoted d, where 0 1d , hence: 

 
21 1

d

t tL L L v             (2.6) 

 

         
1 1 21 1 1 1

d

t th L L L L          (2.7) 
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Once again, the autoregressive lag polynomial, 1 L L , contains a unit root 

and all the roots of  and 1L L  lie outside the unit root circle. The 

argument behind the utilisation of this model is that the squared innovations of the 

current conditional variance would have a slow hyperbolic rate of decay. This would 

mean that shocks to volatility would persist longer than in the case of the GARCH 

model, but would eventually decay, unlike in the IGARCH model, hence the term 

long memory. 

 

3 DESCRIPTION OF DATA 
 

The aim of this section is to present the data that will be used to analyse the volatility 

of freight rates. This data was collected from Clarkson Shipping Intelligence 

Network, a database of all relevant data series for the shipping industry. In order to 

model the volatility of freight rates, prevailing weekly spot rates on shipping routes 

for five different types of vessels were selected (the details for the specific routes can 

be found in Footnote 1 of Table 3.01) and the returns on the spot rates were calculated 

as follows: 
 

1ln lnt t tr FR FR             (3.8) 

Where: FRt  is the prevailing spot freight rate on that route. 
 
The sample period extending from 6 January 1989 to 28 December 2007 and thus 

consisted of 990 observations. Of the five types of vessels, three tankers, name 

VLCC, Suezmax and Aframax tankers, and two types of dry bulk vessels, i.e. 

Capesize and Panamax, were selected in order to give a balanced perspective of the 

tramp shipping market. Figures 4.01 and 4.02 illustrate these spot freight rates for the 

tankers and dry bulk vessels respectively, while Table 3.01 presents the descriptive 

statistics for the returns. 

 

[INSERT FIGURE 3.01 ABOUT HERE] 

 

[INSERT FIGURE 3.02 ABOUT HERE] 

 

[INSERT TABLE 3.01 ABOUT HERE] 

 

In the case of the tanker data series, the mean annualised returns are calculated to be 

5.8%, 5.7% and 3.5% with respective annualised standard deviations of 79.5%, 78.5% 

and 74.3% for the VLCC, Suezmax and Aframax vessels, respectively. In all three 

cases, returns are found to be slightly positively skewed and exhibit large excess 

kurtosis, with the Jarque-Bera statistics indicating that we could reject the null 

hypothesis of normality for all three series. The Ljung-Box Q-statistics for the three 

data series indicate the presence of significant serial correlation at both the first and 

twelfth lags for the VLCC data series and at the twelfth lags for the Suezmax and 

Aframax data series; however, there is no evidence of significant serial correlation at 

the first lags for the Suezmax and Aframax data series. Finally, the ARCH tests 

indicate the presence of significant ARCH effects for all three data series at the first 

and twelfth lags, thus indicating that volatility would be well modelled by one of the 

ARCH family of models. 
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For the dry bulk vessels the annualised mean returns are 9.7% and 8.9%, with 

annualised standard deviations of 34.7% and 37% for the Capesize and Panamax data 

series, respectively. The Capesize returns illustrate slight positive skewness, whereas 

the returns for the Panamax data series are symmetrical, however both data series 

exhibit large excess kurtosis and the respective Jarque-Bera statistics illustrate that the 

null of normality can be rejected at all conventional levels of significance. Finally, we 

find that the presence of significant autocorrelation and ARCH effects for both data 

series at the first and twelfth lags, where the presence of significant ARCH effects 

indicate that volatility both data series would, as is the case for the tanker data series, 

be well modelled by one of the ARCH family of models. 

 

4 EMPIRICAL RESULTS 
 

4.1 Empirical Results for the GARCH-Class Models 

 

Having run the GARCH (1; 0; 1), IGARCH (1; 1; 0) and FIGARCH (1; d; 0) models, 

the results of which can be found in Table 4.01, all three models come up with the 

similar results for the conditional mean, the lagged conditional mean and the levels of 

skewness and kurtosis. The coefficient for the conditional mean,  t , was found to 

range between 0.001 and 0.004 across data series, however, these values were 

insignificant, at all conventional levels of significance, across all data series. When 

examining the results for the conditional lagged mean,  1t , these were found to be 

negative and significant at all conventional levels of significance for the VLCC, 

Capesize and Panamax data series; while the values for the Suezmax and Aframax 

series, while still negative, were insignificant at all conventional levels, except in the 

case of the IGARCH model for the Suezmax data series, where this figure was 

significant at the 5% and 10% levels of significance. Finally, all data series and 

models indicated the presence of slight positive skewness and excess kurtosis, where 

these were significant at all conventional levels of significance. The exception here is 

the case of the Panamax data series, where the GARCH model, results indicate that 

the skewness was only significant at the 10% level of significance, and the IGARCH 

and FIGARCH model results indicate that the skewness is only significant at the 5% 

and 10% levels of significance. 

 

[INSERT TABLE 4.01 ABOUT HERE] 

 

Where the empirical results start to differ across models is in the estimation of the 

GARCH-type parameters. The coefficients for the constant long-run variance, , 

were insignificant, at all conventional levels of significance, across all data series in 

the case of the GARCH and FIGARCH models, and for the Suezmax, Capesize and 

Panamax data series for the IGARCH models, however, they were effectively zero 

and significant at all conventional levels of significance. The coefficients for 1 , 

which measures the impact of past shocks on the level of volatility, differed across the 

data series and models. For the VLCC, Suezmax and Panamax data series for the 

GARCH model, this parameter was found to range between 0.891 and 0.974, with 

these values being significant at all conventional levels of significance, whereas the 
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coefficients for the Aframax and Capesize data series were found to be insignificant at 

all conventional levels of significance. In the case of the IGARCH model, coefficients 

ranged between 0.715 and 0.975, where these results were all significant at all 

conventional levels of significance. Finally, in the case of the FIGARCH model, 

coefficients for the data series were found to insignificant at all conventional levels of 

significance, with the exception of the VLCC data series, where the coefficient is 0.5, 

and significant at all conventional levels. Results for the coefficient for 1 , where this 

measures the level of persistence in volatility, differ somewhat for the GARCH model 

in that although all are significant at all conventional levels of significance, the 

VLCC, Suezmax and Panamax data series all exhibit extreme persistence in volatility, 

with values of 0.999 for the VLCC and Suezmax data series and 0.946 for the 

Panamax data, while the results for the Aframax and Capesize data illustrate some 

persistence, with coefficients of 0.622 and 0.818, respectively. This parameter, which 

is the sum of the 1  and 1  parameters, is not calculated for the IGARCH and 

FIGARCH models as there is no 1  parameter for these models, thus persistence in 

these cases is measured by the 1  parameter.  

 

The final parameter to discuss is d, which is indicates the level of fractional 

integration for the data series, where this is only estimated for the FIGARCH model, 

as the GARCH model inherently assumes that the data series follows an I(0) process, 

while the IGARCH model implies that volatility is an I(1) process. All five data series 

have coefficients for d which are significant at all conventional levels, and which 

range between 0.157 and 0.49.  

 

Having run the models, we once again tested the models to determine whether any 

autocorrelation and ARCH effects had been removed. In terms of the presence of 

autocorrelation, the tests revealed that for the GARCH model, all five data series still 

had significant autocorrelation, at all conventional lags at the 20
th

 lag; whereas for the 

IGARCH model, the Suezmax and Aframax data series had significant 

autocorrelation at all conventional levels at the 20
th

 lag, whereas the VLCC data series 

had persistent autocorrelation at the 20
th

 lag for the IGARCH and FIGARCH models, 

however, this was only significant at the 5% and 10% levels for the IGARCH model 

and the 10% level for the FIGARCH model. The test for ARCH effects indicated that 

there are no significant ARCH effects at the 20
th

 lag for any model and any data 

series. 

 

A point of interest is that for all data series, except for the Capesize data series, the 

level of skewness increased between the GARCH and FIGARCH models, which may 

suggest that the FIGARCH model may be capturing more of the dynamics of the 

series in these cases. In addition, the level of kurtosis decreased all cases, except for 

the Panamax data series, which may indicate that the problem of fat tails is reduced. 

Finally, the log-likelihood estimation indicates that the FIGARCH model is preferred 

in all cases, except in the case of the Panamax data series, where the GARCH and 

FIGARCH models have the same log-likelihood value. For these reasons, and the fact 

that the FIGARCH model removed the most autocorrelation and all the ARCH 

effects, we can conclude that the FIGARCH model may present the best        

GARCH-type model for freight rate volatility. 
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4.2 An Examination of the Values-at-Risk 

 

Having estimated the respective GARCH, IGARCH and FIGARCH models, we      

re-estimated the models using a smaller in-sample period, which extended from 6 

January 1989 to 29 March 2002, and using these estimates performed a one-day ahead 

rolling volatility forecast, with the out-of-sample period extending from 5 April 2002 

to 28 December 2007. The aim of this forecast was to ultimately calculate the 

respective 1% and 5% Values-at-Risk (VaR) for all models across all data series. 

 

One should note that should a VaR for a model be higher than the actual VaR 

incurred, this would mean too much capital has have been kept in reserve as security 

to cover potential losses, where this could have better utilised for investment 

decisions elsewhere. However, if the VaR for a model is lower than the actual VaR, 

this would mean that the actual losses exceeded the forecast levels, and the relevant 

parties would have not kept enough capital in reserve and thus may have not been 

able to cover actual losses. 

 

[INSERT TABLE 4.02 ABOUT HERE] 

 

The VaR figures are presented in Table 4.02 and illustrate some interesting, but  

somewhat mixed, results. If one was to compare the 1% and 5% VaR figures for the 

three model against each other, one would find that in the case of the VLCC, Aframax 

and Capesize data series, the GARCH model provides the lowest variable, whereas 

for the Suezmax data series that would apply to the FIGARCH model and for the 

Panamax data series, the IGARCH model. One should note, however, that the 

GARCH model for the Aframax data series was illustrated in Table 4.01 to have 

failed to remove all present ARCH effects, and therefore we can conclude that in that 

case the most appropriate model may in fact be the FIGARCH model. The same 

applies if you were to compare each model’s 1% and 5% VaR to the actual VaR for 

the data series, i.e. the VaR calculated on the historic data as opposed to the respective 

forecasts. We feel that these results may indicate that there is some form of size effect 

with respect to the volatility of tankers and bulk carriers as the smaller-size vessels in 

each case illustrated more persistence in volatility. 

 

An important element to note is that, as we have stated earlier, the fact that the 1% 

and 5% VaR for the actual data series is lower than that for any of the respective 

models means that the forecast estimates all erred on the conservative side. For this 

reason, we specified the best model as the model which has the least negative VaR, or 

the VaR which is closest to the actual VaR. 

 

5 CONCLUSION 
 

This paper examined for the first time in the shipping literature the issue of fractional 

integration in freight rate volatility. In order to do this, we estimated three models, 

namely standard GARCH (Bollerslev (1986)), IGARCH (Engle and Bollerslev 

(1986)) and FIGARCH (Baillie, Bollerslev and Mikkelsen (1996)) models. The 

rationale behind this research was that there is a delay between the ordering and 

delivery of new vessels, where this would entail that, although freight rates are    
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mean-reverting in the long-run, the mean reversion process would occur with a lag. 

This is in essence the definition of a long memory, or fractionally integrated process. 

 

Based on the estimates of each of these models, we find that the most appropriate 

model, based on the respective log-likelihoods, was the FIGARCH model in all cases. 

In order to provide a practical, rather than purely statistical basis for our model 

selection, we subsequently performed a one-day rolling forecast using a sub-sample of 

the data for our out-of-sample analysis, calculated the VaR for each of the models, 

and then compared these with the actual VaR for each of the data series. We find that 

for the VLCC and Capesize data series, the most appropriate model was the GARCH 

model, whereas, for the Suezmax and Aframax data series, the most appropriate 

model was found to be the FIGARCH model and the best model for the Panamax data 

series was the IGARCH model. We feel that these results once again may indicate 

that there is some form of size effect for the volatility of tankers and bulk carriers as 

the smaller-size vessels in each case illustrated more persistence in volatility. 

 

To conclude, we feel that although these results do provide some clarity and insight as 

to the structure of freight rate volatility in the shipping markets, the fact that the 

results are somewhat mixed may indicate a need for further examination and 

reflection as to other potential types of models that may possibly be more accurately 

employed.. 
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Figure 3.01 – Spot Freight Rates for Tankers (6 January 1989 to 28 December 2007) 
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Figure 3.02 – Spot Freight Rates for Bulk Carriers (6 January 1989 to 28 December 2007) 

 

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

06/01/1989 06/01/1991 06/01/1993 06/01/1995 06/01/1997 06/01/1999 06/01/2001 06/01/2003 06/01/2005 06/01/2007

Time

$
 /

 M
e

tr
ic

 T
o

n
n

e

CPSZ PNMX



 13 

Table 3.01 – Descriptive Statistics for Spot Freight Rate Returns 

 

  VLCC SZMX AFMX CPSZ PNMX 

 Sample Size 991.000 991.000 991.000 991.000 991.000 

      

 Mean 0.058 0.057 0.035 0.097 0.089 

 Variance 0.633 0.616 0.552 0.121 0.137 

 Std. Dev. 0.795 0.785 0.743 0.347 0.370 

      

 Skewness 0.436 0.539 0.512 0.495 0.134 

 Kurtosis 9.375 5.685 9.104 5.885 6.234 

      

 Jarque-Bera 1707.699 345.444 1580.408 383.652 434.316 

 Probability 0.000 0.000 0.000 0.000 0.000 

      

 Q(1) 11.602 1.850 1.103 73.064 48.983 

 Probability 0.001 0.174 0.294 0.000 0.000 

 Q(12) 61.579 53.077 60.103 92.602 64.282 

 Probability 0.000 0.000 0.000 0.000 0.000 

      

 ARCH(1) 4.395 24.651 7.108 40.072 6.505 

 Probability 0.036 0.000 0.008 0.000 0.011 

 ARCH(12) 201.600 126.630 49.058 76.988 26.000 

 Probability 0.000 0.000 0.000 0.000 0.011 

      

Note 1: VLCC denotes the weekly spot freight rate returns for a 270,000 DWT VLCC tanker carrying 

crude oil from Ras Tanura (Saudi Arabia) to Rotterdam (Netherlands). 

SZMX denotes the weekly spot freight rate returns for a 130,000 DWT Suezmax tanker 

carrying crude oil from Bonny (Nigeria) to off the coast of Philadelphia (USA). 

AFMX denotes the weekly spot freight rate returns for an 80,000 DWT Aframax tanker 

carrying crude oil from Sullom Voe (UK) to Bayway (USA). 

CPSZ denotes the weekly spot freight rate returns for a 145,000 DWT Capesize bulk-carrier 

carrying iron ore from Tubarao (Brazil) to Rotterdam (Netherlands). 

PNMX denotes the weekly spot freight rate returns for a 55,000 DWT Panamax bulk-carrier 

carrying grain from the US-Gulf (USA) to Rotterdam (Netherlands). 

Note 2: The sample period for the data used for this table extends from 13 January 1989 to 28 

December 2006, with a total of 990 observations. 

Note 3: The spot freight rates for the VLCC, Suezmax and Aframax tankers’ data series are denoted in 

Worldscale units. 

Note 4: The spot freight rates for the Capesize and Panamax bulk-carriers’ data series are denoted in 

US$ per metric tonne. 

Note 5: The data used for this table is all sourced from the Clarkson Shipping Intelligence Network 

(www.clarskons.net). 

http://www.clarskons.net/
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Table 4.01 – Results from the GARCH-Type Models for Freight Rate Returns 

 

VLCC SZMX AFMX CPSZ PNMX VLCC SZMX AFMX CPSZ PNMX VLCC SZMX AFMX CPSZ PNMX

0.002 0.002 0.001 0.001 0.002 0.002 0.002 0.002 0.001 0.001 0.003 0.004 0.002 0.001 0.001

(0.282) (0.413) (0.681) (0.505) (0.259) (0.327) (0.424) (0.521) (0.511) (0.305) (0.290) (0.112) (0.507) (0.671) (0.355)

-0.149 -0.063 -0.002 -0.305 -0.237 -0.149 -0.063 0.026 -0.298 -0.225 -0.141 -0.049 0.019 -0.300 -0.238

(0.000) (0.131) (0.949) (0.000) (0.000) (0.000) (0.030) (0.439) (0.000) (0.000) (0.000) (0.173) (0.578) (0.000) (0.000)

0.000 0.000 0.004 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.001 0.000 0.000

(0.469) (0.451) (0.111) (0.254) (0.346) (0.000) (0.223) (0.000) (0.359) (0.442) (0.360) (0.588) (0.297) (0.581) (0.999)

0.934 0.974 0.430 0.617 0.891 0.934 0.975 0.715 0.820 0.975 0.500 0.067 0.000 0.000 0.067

(0.000) (0.000) (0.179) (0.014) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.292) (0.999) (1.000) (0.218)

0.999 0.999 0.622 0.818 0.946 --- --- --- --- --- --- --- --- --- ---

(0.000) (0.000) (0.003) (0.000) (0.000) (---) (---) (---) (---) (---) (---) (---) (---) (---) (---)

d --- --- --- --- --- --- --- --- --- --- 0.490 0.267 0.166 0.202 0.157

(---) (---) (---) (---) (---) (---) (---) (---) (---) (---) (0.000) (0.000) (0.000) (0.000) (0.000)

log L 931 873 872 1678 1578 931 873 854 1669 1571 935 877 878 1681 1578

b 3 0.435 0.541 0.514 0.495 0.135 0.311 0.698 1.125 0.349 0.163 0.327 0.694 0.893 0.373 0.167

(0.000) (0.000) (0.000) (0.000) (0.083) (0.000) (0.000) (0.000) (0.000) (0.037) (0.000) (0.000) (0.000) (0.000) (0.032)

b 4 9.414 5.701 9.133 5.938 6.251 5.268 5.399 10.958 5.607 6.665 5.030 5.059 6.057 2.496 6.511

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Q  (20) 56.907 63.180 81.216 81.151 66.704 32.648 56.177 71.121 13.336 14.456 30.178 56.564 79.125 13.765 12.827

(0.000) (0.000) (0.000) (0.000) (0.000) (0.037) (0.000) (0.000) (0.863) (0.807) (0.067) (0.000) (0.000) (0.842) (0.885)

Q
 2
(20) 19.766 18.518 37.285 15.884 20.103 17.768 24.748 18.723 16.196 22.813 11.915 19.513 19.251 10.966 20.280

(0.473) (0.553) (0.011) (0.724) (0.452) (0.603) (0.211) (0.540) (0.704) (0.298) (0.919) (0.489) (0.506) (0.947) (0.441)

GARCH (1; 0; 1) IGARCH (1; 1; 0) FIGARCH (1; d ; 0)

Note 1: See notes from Table 3.01. 

Note 2: Figures in parentheses are the respective p-values, while figures in bold are significant at all conventional levels of significance. 



 15 

Table 4.02 – Estimated Values-at-Risk for the Data Series 

 

GARCH (1;0;1) VLCC SZMX AFMX CPSZ PNMX 

  VAR01 -$334,271.18 -$310,932.65 -$237,810.86 -$118,392.85 -$114,062.80 

  VAR05 -$236,404.17 -$219,898.63 -$168,185.24 -$83,730.11 -$80,667.80 

            

IGARCH (1;1;0) VLCC SZMX AFMX CPSZ PNMX 

  VAR01 -$344,694.83 -$329,773.72 -$286,746.25 -$139,139.09 -$105,073.95 

  VAR05 -$243,776.01 -$233,223.46 -$202,793.46 -$98,402.33 -$74,310.68 

            

FIGARCH (1;d;0) VLCC SZMX AFMX CPSZ PNMX 

  VAR01 -$336,155.84 -$301,902.38 -$262,048.90 -$121,699.21 -$112,554.85 

  VAR05 -$237,737.04 -$213,512.22 -$185,326.93 -$86,068.44 -$79,601.35 

            

ACTUAL VLCC SZMX AFMX CPSZ PNMX 

  VAR01 -$252,922.90 -$265,654.81 -$190,474.07 -$87,787.31 -$80,115.24 

  VAR05 -$178,872.82 -$187,877.12 -$134,707.59 -$62,085.18 -$56,659.32 

            

Note 1: See notes from Table 3.01. 

Note 2: VAR01 denotes the 1% Value-at-Risk, while VAR05 denotes the 5% Value-at-Risk 

Note 3: Actual denotes the Values-at-Risk for the actual data series as opposed to forecasts. 

Note 4: These Value-at-Risk figures are based on an initial capitalisation level of US$1 million. 

 


