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1. Introduction and Literature

This paper demonstrates and calibrates an econometric model of time varying volatility
with jumps, mixing historical observations with forward looking options data. We then use
a dataset of historical equity index data combined with intraday index options prices to
demonstrate the change in jump intensities during 2008.

Since Bollerslev (1986) generalised the Autoregressive Conditional Heteroskedasticity
(ARCH) model, proposed by Engle (1982), a number of different approaches have improved
the explanatory power and the out-of-sample performance of volatility clustering models.
However, the traditional GARCH model has significant limitations for option valuation:
first, it fails to account for a potential leverage effect and second, spot volatility is usually
found to be highly persistent. The former arises because negative news may have an ad-
ditional adverse impact on prices through the decrease of the debt-to-equity ratio thereby
complicating the valuation of deep out-of-the-money options. The latter point reduces the
performance of the model for close to maturity options. These shortcomings have been ad-
dressed through a wide range of extensions, including Nelson (1991) (EGARCH), Glosten
et al. (1993) (GJR-GARCH) and Heston (1993) (NGARCH), where all of these models
generate negative implied skewness of the asset return distribution, which in turn leads to
higher prices of the out-of-the-money put options when compared to the Black and Scholes
formula under time invariant volatility. More recently, several empirical studies have demon-
strated the importance of time-varying volatility and negative skewness in reducing observed
anomalies associated with the Black and Scholes pricing formula when compared to actual
market data, see for instance, Bakshi et al. (1997), Bates (2000), Broadie et al. (2007)) and,
for an example using non-normal innovations, see Christoffersen et al. (2006)).

Modelling higher levels of persistence in time varying volatility models has been the aim
of a number of discrete and continous time models. For example, Jorion (1998) proposes
a model with normally distributed Poisson jumps highlighting the implications for option
pricing. Additionally, strong evidence of jump components in foreign exchange markets has

been found by Jorion (1998) and Palm and Vlaar (1993), while Chan and Maheu (2002)



and Maheu and McCurdy (2004) investigate a Poisson-normal jump model on individual
stocks and broad indices. The two latterly mentioned papers model time-varying conditional
jump intensity as the simple time-series process driven by the autoregressive component and
the ex-post jump probability. Further observations in the literature reveal that modelling
Poisson-normal jumps in returns and variance along with the conventional GARCH processes
could lead to significant improvement in capturing the underlying process, see for instance
Maheu and McCurdy (2004), and Christoffersen et al. (2008)).

Following the analysis in Christoffersen et al. (2008) this paper presents the component
GARCH specification of the Heston and Nandi (2000) NGARCH model. A closed-form so-
lution exists for the component GARCH models, hence option pricing is relatively straight-
forward. The data covers 1988-2010 which provides an additional challenge for modelling
index volatility due to the highly volatile period during the 2008 financial crisis. We find
that the long-run volatility component is highly persistent, hence we study a special case,
where the long-run component is modelled to be fully persistent. Our models generate richer
autocorrelation structures and volatility of variance paths in comparison to the benchmark
NGARCH model. However, based on the likelihood criterion the persistent specification is
found inferior not only for the component model but also for the benchmark NGARCH for
all the indices studied in this paper.

The NGARCH model with Poisson-normal jumps in returns and variance, which can
potentially alleviate some biases associated with the Heston and Nandi (2000) model, is
used as an additional benchmark for the component GARCH model in Christoffersen et al.
(2008). It appears that modelling conditional non-normalities in the return distribution
improves the fit of the model for the historical returns series. On tbe other hand, the option
valuation comparison provides strong evidence in favour of the component GARCH model.
Poisson-normal jumps improve the NGARCH model’s performance particularly in valuing
the long-maturity and deeply out-of-the-money options, at the same time they worsen pricing
of the short-maturity options.

Evidence that jumps tend to cluster together has been found in the continuous-time and

discrete-time literature. We choose a functional form for the conditional jump intensity
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process similar to the one used in Chan and Maheu (2002) and in Maheu and McCurdy
(2004). The model is applied to data on daily total returns from the following: the Standard
and Poor’s 500 (S&P 500), the Dow Jones Industrial Average (DJIA), the Deutscher Aktien
Index 30 (DAX 30) and the FTSE 100 indices. The maximum likelihood analysis suggests
that the best fit of historical return dynamics is achieved by the AR-Jump model, followed
by the Constant-Jump model with the constant jump intensity and the component GARCH
model being the worst alternative among these three models.

Option valuation performance for a complete cross section of index options for the AR-
Jump model is encouraging. First, the component NGARCH outperforms the component
GARCH model using the root mean squared error (RMSE), which is 1% lower for the AR-
Jump model. Second, the RMSE value corresponding to the shortest maturity options is
23% lower for the AR-Jump model. In addition, a comparison of the implied volatility biases
suggests that the AR-Jump model is able to generate an implied volatility path which better
matches the spot volatility path from market prices.

The remainder of this paper is structured as follows: §(2) provides the derivation and
analysis of the component GARCH model by modelling short-run and long-run volatility
components. §(3) discusses models with Poisson-normal jumps and introduces the AR-
Jump model. §(4) examines the option valuation performance of the component GARCH

and AR-Jump models through calibration to SPX option data, and finally, §(5) concludes.

2. Modelling short-run and long-run volatility components

This section follows the analysis conducted in Christoffersen et al. (2008) and derives the

component GARCH model with the special case of extreme persistence called the persistent

GARCH model. Both models stem from the Heston and Nandi (2000) NGARCH model.



Construction of the component GARCH model

Heston and Nandi (2000) show that the following NGARCH specification allows for a

closed-form solution for the price of a European call option

Riyp = In (St+1/St) =7+ M1 + 201 vV hia (1)
2
ht+1 = w-+ bht + G(Zt - C\/h_t) (2)

where S;,1 denotes the asset price; R;, 1, the logarithmic return; r, the risk-free rate; A, the
risk premium; h;, 1, the daily variance; z;,1, the independently identically distributed (i.i.d.)
normal A (0,1) shock. This model stems from the conventional GARCH(1,1) specification
and includes a leverage effect, captured by the parameter ¢. The unconditional variance, is

therefore

E[hi1] =0 = w+ bo® + a+ ac’o? (3)
9 w+a

- - 7 4

? 1—b—ac? ()

substituting w into the original equation one reveals
2
hev1 = 0%+ (ht — 02) + <<zt — C\/ht) — (1 + 0202)) (5)
Now, assuming the unconditional mean varies with time and denoting it by ¢;1, the equation

may be rewritten as

hiv1 = quer + B (e — qr) + <(Zt - ’YN/E)Z - (1+ 712%)) (6)

This model stems from the Heston and Nandi (2000) NGARCH model and is functional
for a model that allows for the closed-form solution for the price of European call option.
Following Christoffersen et al. (2008), we denote two components of the volatility process,

a long-run component ¢;; and a short-run mean-zero deviations h;y1 — ¢:+1. The model



could be rewritten as:

hiv1 = q1 + (0‘712 + 5) (ht — @) + ((Zt -Mn \/@2 - (1 + VIth)> (7)

Where (zt — 71\/h_t)2 — (1 +m2hy) = (2 — 1) — 2v120v/hy = v1,4, is a mean-zero innovation.
Denoting § = a2 + B and specifying the functional form of the long run component g, ,

the model appears as

hivi = G+ B (ht — q) + vy (8)
Q1 = W+ pg+ ooy 9)

where
vie = (" — 1) = 27 2/ hy, fori=1,2. (10)

This model is now referred to as the component GARCH model or simply as the component
model. Note that if p < 1 then the unconditional variance is equal to the unconditional
expectation of the long-run component, that is E [hsy1] = E [¢11] = w/(1 — p). In addition,
both innovation terms are mean-zero E [v;;] = E;_q [v;] for i = 1,2. As a result, the
component model has eight parameters A, B , Y1, W, p, varphi and 7,, while the benchmark

Heston and Nandi (2000) NGARCH model has five.

The Persistent GARCH model

Conditional variance in the component model is a mean-reverting process if p < 1 |

therefore the fully persistent long-run component is non-degenerate when p =1,

hist = Qe+ B (he — a) + avry (11)
G+1 = W+ G+ Puay, (12)
where v;; for ¢ = 1,2 are the mean-zero innovations, with functional forms identical to

those of the component model. We refer to this model as the persistent GARCH model or
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simply as the persistent model. This model contains an additional two additional parameters
compared to the benchmark model Heston and Nandi (2000) .

In this model, the long-run volatility component is a unit-root process, hence shocks to
this component never die out. As in the case of the component model we refer to the ¢;,1 as
the long-run component and to h;y 1 —¢q1q as the short-run component. It is possible to refer
to these components as the permanent and transitory, respectively, as the former is the unit-
root process and later reverts to zero. It is expected that the component model, which nests
the permanent component model, is superior to the latter in-sample, while out-of-sample
the permanent component alternative may perform better. The fact that the permanent
component model represents a unit-root process may play a crucial role out-of-sample, as it
is able to capture structural break effects and adjust for it, while the component model is

not.

Empirical results from the SEIP 500 returns

The parameters of the NGARCH, component and persistent models can be easily es-
timated using the maximum likelihood (ML) method. Table 1 presents the ML estimates
of these models, obtained from the daily total return data on the Standard and Poor’s 500
(S&P 500) index over the period 1988-2010. Most of the estimates are significantly different
from zero at 5% significance level. The risk premium is highly significant in all models.
Based on the log-likelihood criterion, the component model performs the best followed by
the NGARCH model, which is followed, in turn, by the persistent model. Surprisingly,
the persistent model performs worse than the NGARCH benchmark. This highlights the

importance of modelling the long-run variance persistence lower than 1.

Properties of the return process

Figure 1 presents an analysis of the improvement of the component model fit over the
benchmark NGARCH model. It displays the sample path of the spot variance in the
NGARCH model (Panel A), as well as in the component model (Panel B), and the vari-
ance components in the component model over the period 2006-2010. Panel D presents the

short-run mean-zero variance component, which adds high-frequency noise to the long-run
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component (Panel C). As a result, the spot variance path of the component model (Panel
B) appears to be noisier than the path generated by NGARCH model (Panel A). This lead
to a higher volatility of the variance in the component model.

Figure 2 further analyses the performance of the component GARCH model in compar-
ison to the persistence GARCH model. The three left panels depict the 2005-2010 sample
path of spot variance (Panel A), the sample path of long-run variance component (Panel
C) and the sample path of short-run variance component (Panel E) for the component
GARCH model. The three right panels present the similar sample paths for the persistent
GARCH model. Clearly, the persistent model’s performance is affected by the presence of
a unit-root in the long-run variance component, particularly during the time of financial
crisis 2008-2009. Due to extreme persistence of the variance process, the persistent model
is unable to adjust for the spike in volatility as fast as the component model. Furthermore,
the effect of this shock decays at a slow pace, causing serious disturbances in the short-run
variance component, which is found to be negative over the most part of 2009. Note that
the long-run variance component in the component model returns to its 2007 level by the
end of 2009, whereas in the persistence model the variance level observed in the first half
of 2008 is reached by the end of 2010. To conclude, in-sample comparison of the compo-
nent GARCH and the persistent GARCH models highlights the necessity of modelling the
long-run variance persistence different from one.

In addition to the conventional log-likelihood comparison, the three models can be
compared by assessing their variance persistence properties. The variance persistence of
the NGARCH model is defined as b + ac? of the component GARCH as p + B(ht —q)
(see Christoffersen et al. (2008)). As expected, the variance persistence of the component
GARCH model 0.9954 is almost equal to 1, which is the persistent GARCH case. However,
it appears that modelling persistence as the component GARCH model is important for
the performance. The difference between the likelihoods can be caused by the difference
in the short-run and the long-run persistence of the two models. Short-run persistence of
the component GARCH model is equal to 0.6673 versus 0.8852 for the persistent GARCH,

whereas the persistence of the long-run component is 0.9861 in contrast to 1. The persistence
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of the NGARCH model is 0.9698, which is higher then the average of estimates in Heston
and Nandi (2000), the estimate in Christoffersen et al. (2008) and slightly higher than the
estimate in Christoffersen et al. (2006).

[INSERT A SINGLE PANEL OF FIGURES 1 AND 2 ABOUT HERE]

The volatility of the conditional variance and the covariance and correlation between
returns and variance play a crucial role in option valuation. Option prices depend on the
underlying volatility, thus variation of the option price is a consequence of the volatility of
variance. Christoffersen et al. (2008) show that the volatility of the conditional variance
is closely related to kurtosis and the ability to replicate option prices volatility. Therefore,
the higher values of conditional variance indicate an ability to generate richer kurtosis and
better fit the evolution of option prices.

The functional form of the NGARCH model generates the following function of the

conditional variance of variance
Var; (hiyo) = 2a° + 4a*c®hyyy (13)
For the component and persistent models, the conditional variance of variance is equal to
Vary (hiss) = 2(a + w)® + 4(ayy + wya) hers (14)

The three left panels in Figure 3 present the paths of the conditional standard deviation
of variance in the three models during the period 2006-2010. It is clear that the standard
deviation of variance in the component model is generally higher and more volatile than in
the NGARCH model. Table 1 reports the average volatility of variance during 2006-2010;
the component GARCH result is almost two times higher than the NGARCH one.

[INSERT FIGURE 3 ABOUT HERE]
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There is a link between the volatility of variance and kurtosis. Figure 3, therefore, shows
that component GARCH model is able to generate richer kurtosis and potentially richer
option prices. Heston and Nandi (2000) show that the conditional covariance between the

variance and return in the NGARCH model is given by

Covy [Rey1, hiyo) = By [(Rigr — Ey [Rega]) (hego — By [hega])] = —2achiy (15)

Consequently, the conditional correlation in the NGARCH model is defined as follows

—2chi

Corry [hyy1, hiaa] = \/m (16)
The conditional covariance in the component GARCH model is given by
Cove [Ris1, hesa] = =2 (am + ¢72) hun (17)
thus, conditional correlation in the component GARCH model is
Corry [hes1, hu o) = —2(am + 9) i (18)

\/Q(a + 90)2 +4(ay + 8072)2ht+1

The three right panels in the Figure 3 show the conditional correlation between the return
and the conditional variance in the three models. In general, conditional correlation in the
component and persistent models is lower than in the NGARCH model. In the component
and persistent models conditional correlation drops almost to -1 in the first quarter of 2007
and stays extremely low till the end of 2009 in the component model and till the end of
the sample (end of 2010) in the persistent model. Table 1 reports the average correlations
during 2006-2010, -92.74% in the NGARCH model, -97.41% in the component GARCH and
-96.71% in the persistent GARCH.

[INSERT TABLE 1 ABOUT HERE]
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3. Poisson-normal jumps and an Autoregressive (AR) jumps model

Our motivation for contributing a deeper understanding of the jump process is funda-
mentally rooted in the findings from previous empirical studies which appear to confirm the
importance of including jump effects in both returns and volatility. For example, Jorion
(1998) and Palm and Vlaar (1993) show that modelling constant intensity jumps in the
return dynamics can improve the fit of the model while Andersen et al. (2002) demonstrates
the apparent reduction in biases for models such as the Heston (1993) model, when account-
ing for jumps. Others, such as Chan and Maheu (2002), Jorion (1998), Maheu and McCurdy
(2004) and Palm and Vlaar (1993) show the relevance of jump effects in return dynamics for
discrete-time models, while evidence confirming the importance of Poisson-normal jumps in
returns and volatility for continuous time modelling can be found in Andersen et al. (2002),
Bakshi et al. (1997), Bates (1996, 2006), Chernov et al. (2003), Eraker et al. (2003), Er-
aker (2004) and Pan (2002). Perfectly correlated jumps are examined in greater depth by
Broadie et al. (2007), Eraker (2004), and Eraker et al. (2003) while Christoffersen et al.
(2008) and Elkamhi and Ornthanalai (2010) demonstrate improvement in estimating option
valuation when using a discrete-time Poisson-normal jump model. This section outlines
Poisson-normal jumps and provides the building blocks for the AR jump model which we
will compare with the Poisson-normal jump model in §4 for pricing options.

Christoffersen et al. (2008) augment the Heston and Nandi (2000) NGARCH model with
perfectly correlated Poisson-normal jumps in returns and variance to provide a more chal-
lenging benchmark for the component model. Their GARCH(1,1)-Jump model significantly
improves the fit of the S&P 500 daily return series. However, while the component model
is superior, when compared on the basis of option pricing the GARCH(1,1)-Jump model
performs well in valuing deep out-of-the-money and long-maturity options, although it fails
to surpass NGARCH benchmark in pricing short-maturity options. The better performance
of the GARCH(1,1)-Jump model for long-maturity options could be linked to the functional
form of variance, which yields non-normal behaviour of the conditional distribution at longer

horizon.
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Poisson-normal jumps in returns and volatility

The Constant-Jump model can be described in the following way: Consider the following

return R; generating process

Riyi = 1+ XNhpr + A0+ 2010V hag1 + Y1 — 1 (19)
2
Yt
h = + bh, + + == —cvh 20
t+1 w t G(Zt \/h_t C t) ( )

where A, is the diffusive risk premium, A, is the jump risk premium, 2z, is the diffusive
innovation and g,y is the jump innovation. The functional form of the model insures that
the expected log excess returns are equal to the sum of diffusive and jump risk premiums.
Diffusive innovation z;,; is assumed to be independently and identically distributed A (0, 1),

while the jump innovation y;.; is a simple compound Poisson process of the following form

Nty '
Y41 = Z Xz;{i}i’ (21)
j=1
with
XU~ N (1, 72), o j =12, Ny (22)

where N;y; is a Poisson random variable with the constant intensity n and conditional

density
P (Niwr =) = — (23)

There is growing evidence that jumps tend to cluster together in a similar manner to the
conditional volatility processes. Logically, we can think of sustained episodes of abnormal
volatility and market crashes which can be realized in a series of jumps over a short period of
time. For example, using option pricing data, Bates (1991) finds that the number of expected
jumps around the 1987 crash behaved in a systematic fashion i.e. a piecewise constant
intensity around the crash. This finding is reinforced by the continuous-time literature
where evidence of clustering of jump intensities in equity returns is apparent, see for instance

Andersen et al. (2002), Bates (2000), Chernov et al. (2003), and Pan (2002).
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To shed further light on the appropriate jumps process process we offer additional insight
to the GARCH(1,1)-Jump model of Christoffersen et al. (2008) by modelling jump arrival
intensity in a time-varying framework. We take as our starting point the model presented
in Chan and Maheu (2002) and Maheu and McCurdy (2004) where the conditional jump
intensity is modelled as an ARMA process, which is determined by a one-lag autoregressive
component and the ex-post assessment of the jump probability. This model has a similar
functional form to the Constant-Jump model with the added dimenstion that the jump
intensity is modelled as a time-varying process. We refer to this model as the AR-Jump
model.

Intuitively, the clustering of jumps is interpreted as a function of the clustering of news
innovations. Diffusion and jump components, in turn, are the normal and the highly un-
usual, high impact, news events, respectively. Conventionally, the former is modelled as
the normal innovation process and the latter is modelled as the compound jump Poisson
process. It is, therefore, assumed that the normal news cause smoothly evolving fluctuations
of the conditional variance, while the jump process causes exceptionally large movements
of returns and variance. For the individual stocks, unusual news represents unexpected
announcements about prospective cash flows and for the stock indices, they represent unex-

pected information, which affect a wide range of companies.

Building the AR-Jump model

Denoting information available at time t by ®;, the AR-Jump model for returns is defined

as follows

Ripi =714+ Xohepr + A1 + zei vV i + Yepr — 10 (24)

with volatility dynamics

2
ht+1 = w + bht + a(zt ‘I— % — C\/h_t) (25)
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and jump intensity

Nev1 = Mo+ pne + 76 (26)
Nit1 '
Yt+1 = Z Xt{i]i (27)
j=1
with
X~ N (1 72) (28)
for j =1,2,..., Nyyq, and '
. 6m+177§+1
P(Ney1 =4 1@) = ———— (29)

!

where & is the intensity residual and 7, is the ex ante assessment of the number of jumps
to occur in period ¢. Jorion (1998), Christoffersen et al. (2008) and Constant-Jump models
represent the special case of the above specification with p and v restricted to zero. The

intensity residual has the following form

&G=E[N|®]—m=> jP(N,=3j|P)—n (30)

=0
The probability P (N; = j |®;) is the ex post inference on the number of jumps occurred in
the period t, given information available at time t. E [N; |®;] is the ex post assessment of the
number of jumps that occurred at time t and 7, is the ex ante expectation. In other words,
intensity residual & represents the change of the conditional expectation as the information

set updates

& =E [N |D] —E[N; [Py1]. (31)

Note, first, that by construction conditional and unconditional expectations of the intensity
residual are both equal zero

E [§t |(I)t—1] =E [ft] =0 (32)
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Second, if jump intensity is a stationary process (p < 1), then the unconditional jump

intensity is equal to

(33)
which is time invariant.

Conditional moments of returns

Both models generate similar conditional moments of returns. The derivation of the
first four conditional moments of returns can be found in Devroye (1982). Denoting con-
ditional variance, skewness and kurtosis of the returns as Var (R; |®;—1), Sk (R, |®;—1) and

Kur (R; |®:—1), respectively:

E(Rt|q)t_1) = T+)\zht+AyT]t (34)

Var (Ry |®,-1) = he+ (77 + p°) e (35)
3_|_3 2

Sk (Ry|@,y) = — MU 30T (36)

(ht + 7]{7’2 + ntuz)3/2
e (1t + 6’7 + 37%)
(he 4+ mum2 + mp2)?

Kur (Rt |q)t—1) = 3"— (37)

In the case of the Constant-Jump model, conditional jump intensity is a constant. All
moments are effected by the conditional jump intensity 7; and the conditional variance h;.
The sign of the conditional skewness, in turn, depends only on the sign of the mean of the

jumps’ distribution.

Log likelihood function

The log-likelihood function for the mixture of the normal and Poisson processes represents

the sum of conditional Normal densities of returns, given the number of jumps occurring

. 1 (R, — 7 — Mohy — Ay — i + pume)’
P (R N, = j, &) = exp [ — : 38
B Ne =0 ®0) = 57 p( 2 (b + j72) )
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Thus, log-likelihood LL has the following functional form

t=1

LL = log <ZIP’ (Ry| N, = j, ®_1)P(N, = j|<I>t1)> (39)
j=0
The jump intensity function of the AR-Jump is defined as above, with the special case of
constant jump intensity for the Constant-Jump model. The ex post inference on the number

of jumps occurred at time ¢, based on the information available at this time is defined as

. PRN:,(P_PN:¢_
PN, = j|&,) = LBl Ni =5, 20 1) PN = j1i1) 0

o0

P (R Ny = j, ®11) P (N; = j|Py_1)
—0

J

and represents the ex post distribution for the number of jumps, N;. Note, that the terms in
the log-likelihood function and ex post distribution include infinite summation. In order to
numerically optimise these functions, the summation has to be truncated after some value.
Similar to Jorion (1998) we truncate the summation in the Constant-Jump model at 10. For
the AR-Jump model the satisfactory accuracy is achieved when the summation is truncated
at 40. Maheu and McCurdy (2004) truncate it at 25, however our model is estimated on a

much more volatile data and needs to capture up to 20 jumps per day.

The SEP 500 model

Table 2 presents the MLE estimates of the Constant-Jump and the AR-Jump models’
parameters for the total returns data on the S&P 500 index over the period 1988-2010. Seven
out of nine parameter estimates for the Constant-Jump model are significantly different
from zero at 5% significance level. Since the jump intensity, the average jump size and the
standard deviation of jumps are found significant, there is a strong jump effect in returns
and volatility. Eight out of eleven parameters are significantly different from zero at a 5%
significance level. All the parameters of the Poisson-normal jumps are found significant
as in the Constant-Jump model. The significance of the conditional jump arrival intensity
parameters confirms that the jump arrival process tends to significantly deviate from its

unconditional mean. The difference between likelihood values (19,675 in the Constant-Jump
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model versus 19,783 in the AR-Jump model) suggests that the AR-Jump model is able to

better fit historical returns.

[INSERT TABLE 2 ABOUT HERE]

Interestingly, the estimate for the jump risk premium is not statistically significant sug-
gesting that this variable is less important than we may have expected. The diffusive risk
premium is found to be significant in both models and the estimate in the AR-Jump model is
similar to the estimate in Christoffersen et al. (2008). The average jump size of the Constant-
Jump model is estimated at -1.2%, similar to the estimates in Christoffersen et al. (2008)
and Chernov et al. (2003), and lower than the estimates in Eraker et al. (2003) and Eraker
(2004). The jump arrival intensity in the Constant-Jump model is equal to 0.025, which is
equivalent to approximately 6.3 jumps per year. Both the mean and the standard deviation
of the jump size distribution in AR-Jump model are significant at the 5% significance level.
The lower average jump size in the AR-Jump model allows for a higher flexibility in the
number of jumps that occur in each period. Negative signs of the estimates in the Constant-
Jump and the AR-Jump models ensure that the conditional skewness of returns is negative
in both models. Overall, the significance of the jump size distributions’ parameters in both
models suggests that the jump dynamics affect return distributions through the conditional
variance, conditional skewness and conditional kurtosis.

The average jump intensity (mean of 7;) is equal to 0.84, while unconditional expectation
of the number of jumps (I"T()p)is estimated at 0.93, this does not make the later an unbiased
forecast of the former. The significant difference between the unconditional and realized
mean arises due to the fact that the effect of the previous period jump intensity is neutralised
by the intensity residual component, as a result, the conditional jump intensity process bears
only 10% of information.

Figure 4 depicts the conditional variance of returns of the Constant-Jump (Panel A) and
the AR-Jump (Panel B) models, and the conditional jump intensity (Panel C), which denotes

conditional ex ante expectation of the number of jumps to occur in the next period. It is clear
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that the AR-Jump model is able to generate more volatile return and conditional variance
dynamics and absorb shocks during the volatile period of 2008-2009. The functional form
of the time-varying jump intensity process enables it to adjust for the increased volatility in
2008-2009 and the ex ante expectation of the number of jumps increases from nearly zero

in 2006 to 19 by the end of 2008.

[INSERT A SINGLE PANEL OF FIGURES 4 AND 5 ABOUT HERE]

It is also possible to reckon the ex post probability of at least one jump in a period as
P(N, > j|®)=1—P(N;, =0|®d;). Figure 5 displays the ex ante jump intensity expecta-
tion 7, in Panel A, the realized number of jumps E (R, |®;) in Panel B, the ex ante jump
probabilities P (N; > j |®;_1) in Panel C and the ex post jump probabilities P (IV; > j |®;)
in Panel D. As expected, realized number of jumps appears to be more volatile than the
conditional jump intensity. The average ex ante probability of jump is equal to 36.9% versus
the average ex post probability of jump 37.0%, which makes the former to be an unbiased
forecast of the later. In the most volatile period of the second half 2008 and the first half of
2009 both probabilities are close to 1, as a result of sharp increase in the conditional jump
intensity and the realized number of jumps.

The conditional variance of returns, which is given above, represents a combination of
the conventional GARCH component h; and the jump variance component (72 + p?)n;.
Figure 6 shows the conditional variance decomposition during 2006-2011. Panel A displays
the total conditional variance and Panel B displays individual variance components. It is
clear that the GARCH component generates a smoothly evolving path of the conditional
variance, while the noise and large deviations are generated by the Jump component. Jump
component accounts for 33% of the spot variance during the whole sample and for 47%
during second half of 2008 and first half of 2009. Hence, although Poisson-normal jumps
play significant role in the return distribution, more than 50% of disturbances are explained

by the smooth normal diffusion even in periods of extreme volatility.

18



[INSERT FIGURE 6 ABOUT HERE]

Comparison with other indices

In addition to the previous analysis of S&P 500 total return index data we investigate
the performance of the discussed models on different sets of data. We study daily total
return data for three indices: the Dow Jones Industrial Average (DJIA), the FTSE 100 and
the Deutscher Aktien Index (DAX 30) from January 4, 1988 to December 31, 2010. Our
findings indicate that the component model is superior to the NGARCH and persistence
models, while the AR-Jump model outperforms the Constant-Jump model on any set of
data. Therefore, these inferior models are excluded from the analysis.

Maximum likelihood estimates of the parameters for the indices are presented in Table
3. In general, they are consistent with the estimates for the S&P 500 total return index
reported in Table 1. All indices data exhibit high persistence of variance, with the highest
level of 0.9994 persistence of the FTSE 100 return. Persistence of the long-run component
is close to 1 in all series and varies from 0.979 in the DAX 30 return to 0.991 in the FTSE
return, while short-run persistence is between 0.6 and 0.7 in the DAX 30 and DJIA returns
and 0.94 in the FTSE 100 return.

Table 4 reports maximum likelihood estimates of parameters for the three indices. In all
cases the AR-Jump model significantly outperforms the component GARCH model basing
on the likelihood criterion. The diffusive risk premium A, estimate is significant at 5%
significance level, whereas the jump risk premium ), is found insignificant for the three
indices. Compared to the results in Table 2, jump mean sizes are significantly negative and
smaller than the estimate for the S&P 500 total return index. All the results suggest that
modelling time-varying jump arrival intensity may improve the fit of historical data. The
autoregressive parameters p are significant for all series and stay in line with the estimate

in Table 2.

[INSERT TABLE 4 ABOUT HERE]
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The parameter v, which determines the effect of the intensity residual, is relatively low
for the DAX 30 returns and is almost equal 1 for the DJIA and FTSE 100, which is higher
than estimate for the S&P 500 data, though the latter is insignificant. As a result, the
unexpected component has a much higher influence on the conditional jump intensity in
DJIA and FTSE 100 returns than in DAX 30 data. The unconditional mean of the jump
intensity is estimated at 0.42 for the DAX 30 returns, 0.82 for the DJIA returns and 0.94 for
the FTSE 100 returns, while the observed mean are equal to 0.96, 0.74 and 0.92 respectively.
Hence, the unconditional mean is not an unbiased forecast of the jump arrival intensity for
the DAX 30 and DJIA returns, presumably due to relatively short samples.

Figure 7 plots the conditional variance and its constituent components during 2006-
2011. The GARCH component refers to the variance of the normal diffusion and the Jump
component refers to the variance of the compensated Poisson-normal jump process. Al-
though GARCH components account for the 60%-70% on average, it is clear that during
the volatility at the end of 2008 stems from the Jump component. The flexibility of the
AR-Jump model enables it to better capture the structure of the historical data in compar-
ison with the Constant-Jump and the component GARCH models. However, improved fit
of the historical return series does not necessary lead to the better performance in pricing of
options contracts, as this is dependent on a model ‘beauty contest’ conducted by the market

participants.

[INSERT FIGURE 7 ABOUT HERE]

4. Calibration to SPX Option Data

In this section we will now compare the performance of the component GARCH model
and the AR-Jump model for pricing traded call option contracts on the Standard and Poor’s

500 index.
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Option valuation formula

Given the risk-neutral dynamic, at time ¢, European call option with the exercise price

K that expires at time 7' is priced at:
Call price = e "TVEY [max (S — K, 0)], (41)

where Ef denotes the conditional expectation under the risk-neutral dynamics. This ex-
pectation might be estimated by the Monte Carlo simulation or, in case of the NGARCH
and component models, by the closed-form solution formulae provided in Heston and Nandi
(2000) and Christoffersen et al. (2008). Denoting a conditional moment generating function

by f(t,T : ¢), Christoffersen et al. (2008) show that it can be written as:

[, T:¢) = Elexp(oln(S7))] (42)
= S exp (At + Biyt (hey1 — @41) + BogGgr) (43)

with coeflicients

At = At+1 + 7"925 — (aBl,t+1 + SOBQ,H-I) — 05 lIl (1 — 20éBl,t+1 — Q@ngt+1> + COBQ’H_I, (44)

where ,
~ (a1 B + ¢y2Bap1 — 0.5¢)
By, =3B A 2 d ; 45
v = BB+ A0+ 1 —=2aBy 41 — 2¢Baga (45)
and )
(a1 By + ¢¥2 B — 0.5¢9)
By, = pB A 2 d ’ ) 46
20 = PBap + 20+ 1 —2aB; 41— 2¢0B3 41 (46)
The terminal conditions are therefore
AT = BI,T = BQVT = 0. (47)
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Therefore, f¥ (t,T : i) is the conditional characteristic function under the risk-neutral mea-

sure. European call option price, therefore, is the solution of the following equation,

1 =D e TR (4T i+ 1
Call price = =5, + ‘ / Re [ A il d i )} X (48)
2 s 0 (1%
1 1 [ K= fv (t,T i
d(,D . Ke—T(T—l) <_ + _/ Re |: f (t7 7/(;0):|dg0>
2 mJ 1%]

where Re denotes the real part of a complex number. Note that there is no closed form
solution for the option prices for the models with jump components, therefore, options must
be priced by Monte Carlo simulation. We shall now consider the risk-neutral dynamics of
this price process.

Risk-neutral processes are widely used in the financial literature for valuing contingent
claims. The discounted spot asset dynamics under risk-neutral measure represent a mar-
tingale, as the expected return is equal to the risk-free rate. Thus, the parameters of the
NGARCH and component models could be transformed to the risk-neutral parameters by

equalising the expected return to the risk-free rate
]E:fl} [Se41/S] =€, (49)

Detailed derivations of risk-neutral parameters of the NGARCH and component models
are provided in Heston and Nandi (2000) and Christoffersen et al. (2008) respectively. To

summarise, risk-neutral dynamics for the NGARCH model are given by

Rt+1 =T — 0.5ht+1 + Zil \/ ht+1 (50)
where
2
hesr = w+ b+ a2 = /i) (51)

with ¢¥ = ¢4+ A+0.5 and z:/i .~ N (0,1) and risk-neutral dynamics for the component model

Rt+1 =T — 0'5ht+1 + Z:erl\/ ht+1 (52)
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and

hivi = q1+ 5 (he — @) + « < o1 271 \/_> (53)
Q1 = w+p”’qt+so( —1-2v3z \/_) (54)

with contemporaneous terms

g = B+a<vip2—7f)+¢<7§’2—7§> (55)
P’ = p+a(71”2—vf)+<p<v§’2—’y§> (56)
W= 4+ A+05, i=1,2 (57)

All models with Poisson-normal jumps there are three stochastic processes in the dynamics.
Deriving the risk-neutral forms is often somewhat problematic as noted in Christoffersen
et al. (2008). It may be shown that risk-neutral return and variance dynamics for the

simplest Constant-Jump model are defined as

Riy1 =1 —0.5h 1 + ()\ ) n+ 2t+1\/ hiy1 + yt+17 (58)

and

Y
ht+1:’w+bht+a(22’b+\/_;l—t

where z¥ ~ N (0,1) and y’ ~ CPoisson (n?, u?,7%), with ¢¥ = c+ A\ + 0.5, p¥ = p+ m,7°

- cWE) , (59)

Y

(A — p¥)n? = (Ay — p)n and 0¥ = nexp(myp + 0.5727°). Elkamhi and Ornthanalai (2010)

show that the market price of jump risk 7, can be solved for numerically from the equation

Ay = C() +C(=my) = C(1—my), (60)

where ), is a ML estimate of the physical process and ((¢) = exp(du + 0.5¢*7%) — 1. As
in case of the NGARCH and component models, risk-neutral dynamics are achieved by
setting the diffusive risk premium A, equal to -0.5 and the jump risk premium A, equal to
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p —exp(p + 0.572) + 1 (see Appendix for the formal derivation). Risk-neutral parameters
of the AR-Jump model are defined in the same way as of the Constant-Jump model except
for conditional jump intensity nzp , which for the sake of simplicity is assumed to be equal to
the product of conditional jump intensity and expected jump size from the physical process
My exp(myp + 0.5m272).

Option prices for the component GARCH model are taken from the closed-form solution
provided above. Monte Carlo simulation is used to find option values suggested by the
AR-Jump model. Due to computational burden of Monte Carlo simulation with compound
Poisson-normal process, it is impossible to generate the ideal number of iterations. The
balance between accuracy and required time is achieved with 100,000 iterations.! However,
several previous studies have suggested that the higher number of iterations can significantly
improve the accuracy of estimation. We experimented with single contracts up to 1,000,000

iterations and have found convergence usually occurs at between 80,000 and 120,000.

Data

Prices for European call options on the Standard and Poor’s 500 index (the SPX index
option) are collected from the Thomson-Reuters EIKON data service. The data represents
Thursday closing prices during the 2008 crisis period and consists of 2,134 contracts. We
follow the logic presented in Christoffersen et al. (2008), Dumas et al. (1998) and Heston
and Nandi (2000) and use Thursday data because (a) it is less likely to be a holiday and (b)
Thursday is less likely to be affected by day-of-the-week effects.

The SPX index option contract is the second most active index options market in the
United States and is regularly interpreted, for that reason, as the most appropriate market
for examining option valuation performance (see for example, Heston and Nandi (2000).
Rubinstein (1994) indeed argues that it is the best market for examining option valuation
performance. We select option prices that are taken with up to 10 weeks to maturity in

order to test our models performance in valuing short maturity speculative positions.

Tt takes up to 1.5 hour to estimate one month of option prices by Monte Carlo simulation with 100,000
iterations
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Descriptive statistics for the options data for the 2008 are presented in Table 5 (Panel
A). Option contracts are divided by moneyness and time to maturity. More than half of the
data represent deep-in-the-money call options and one quarter are deep out-of-the-money
contracts. Therefore, models’ performance for these kinds of contracts can be assessed with
a reasonable degree of reliability. It is noted that at-the-money contracts which comprise

the main source of analysis represents 10% of the sample.

Empirical results from the call option valuation

The results on option valuation by moneyness and maturity are presented in Table 6. The
reported root mean squared errors (RMSE) are obtained from the closed-form solution for the
component GARCH and Monte Carlo simulation for the AR-Jump model as described above.
Risk-neutral parameters are calculated from ML estimates for the two models reported in
Tables 1 and 2 respectively. In the component GARCH model the risk-neutral dynamic is
modelled by using A = —0.5. In the AR-Jump model this is achieved by taking A = —0.5
and A\, = pp —exp(p + 0.57%) + 1 = —3.313E — 5.

Panel B in Table 5 reports the RMSE of the component GARCH model. The results
are potentially affected by the above noted shortcomings in the data with the resulting
RMSE values being too large to make any confident conclusions. All the same, we can
learn some lessons from the patterns that are evident. The component GARCH appears to
perform better in valuing the longest maturity options (more than 45 days to maturity). As
expected, the lowest value of the RMSE corresponds to deeply out-of-the-money contracts.
The RMSE for at-the-money options, which are defined hereafter as contracts with the strike
prices within 2.5% of the underlying index values, are high, which might be caused by the

relatively small sample.

[INSERT TABLES 5 AND 6 ABOUT HERE]

Panel C displays the ratio of the AR-Jump RMSE to the component GARCH results.
The total RMSE values do not differ significantly although the AR-Jump model does appear
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to perform well in valuing short maturity options compared to the component GARCH. We
note that the AR-Jump model performs best in valuing deeply out-of-the-money and at-the-
money options with less than 25 days to maturity. Furthermore, results for the 25 to 45 days
to maturity options are better than the component GARCH model. The RMSE for the AR-
Jump model for the long maturity options are clearly inferior and higher than the component
GARCH results at all moneyness levels. Comparing the results by moneyness, the AR-Jump
model surpasses the component GARCH model in pricing at-the-money contracts.

The performance of the models can also be assessed by comparing the ability of the
model(s) to match the market volatility pattern. To analyse this we impute the Black and
Scholes implied volatility for at-the-money options. The implied volatility is calculated for
each week’s market price, the component GARCH price and the AR-Jump price. Figure 8
depicts the average weekly implied volatility bias for the two models, which is the difference
between average market implied volatility and average model implied volatility for at-the-
money call contracts during 2008. Parameter estimates are obtained from Tables 1 and
2. During 2008 the average value of at-the-money option-implied volatility index (VIX) is
22.3% over the first eight months and 48.0% for the rest of the year. Therefore, we refer to
the period from January to August as a low volatility period and the next four months as a

high volatility period.

[INSERT FIGURE 8 ABOUT HERE]

Both models show significant underpricing (positive bias) in the first fifteen weeks.
Thereafter, the volatility implied by the AR-Jump model stays close to the market-implied
volatility, while the component GARCH model shows overpricing (negative bias) during the
summer months with an extreme drop in the middle, which may be caused by the data
shortcomings discussed above. Overall, both models perform in a somewhat similar way
during the low volatility period. On the other hand, the models generate quite different
paths during the high volatility period models and it is clear that the AR-Jump model bet-

ter matches the spot volatility. As in Christoffersen et al. (2008) the component GARCH
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model shows prolonged underpricing during a high volatility period. Notably, however, the
implied volatility bias from the AR-Jump model is generally lower than the one implied by

component GARCH and even drops below zero in two weeks.

5. Conclusion

This work analyses the component GARCH model proposed by Christoffersen et al.
(2008) and presents an extension to their GARCH(1,1)-Jump model with Poisson-normal
jumps in returns and variance, and time-varying jump arrival intensity. The component
GARCH is found to outperform the Heston and Nandi (2000) NGARCH model and the
fully persistent in modelling daily total returns on four indices during the 1988-2010 period.
Although variance persistence in the component GARCH model is close to 1, it is essential
that it is not modelled as fully persistent. Anecdotal evidence on poor performance of the
persistent GARCH modification is often attributed to the lack of flexibility in the intensity
dynamics, which significantly worsen its results during the period of extreme volatility in
2008-2009. The AR-Jump model is found to achieve the best fit to the daily historical
returns, however this has eleven parameters versus the component GARCH’s eight. Strong
evidence of a jump effect is found in all four series. Moreover, the impressive performance of
the AR-Jump model strongly suggests that jumps tend to cluster together. During the latter
part of 2008 we observe extreme clustering of jumps after the Lehmen Brothers bankruptcy.
The model adapts to this exited state and is able to capture the change in market conditions

in a remarkably adept manner.
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Table 2: This table shows maximum likelihood estimates of the Constant-Jump and AR-Jump models.
Estimates of the parameters are obtained using daily total returns on the Standard and Poor’s 500 index
from January 4, 1988 to December 31, 2010 from the Dow Jones Industrial Average (DJIA), the Deutscher
Aktien Index (DAX 30) and the FTSE 100 indices. Parameters that are significant at the 5% significance
level are reported with a *.

Constant-Jump AR-Jump
Parameter Estimate Standard error Parameter Estimate Standard error
A 5.929* 0.009218 A 3.083* 0.005526
Ay -0.01547* 0.007288 Ay -1.634E-12 5.321
w -9.932E-07 0.002992 w -4.302E-17 18.08
b 0.8933* 0.001643 b 0.979* 0.003658
a 2.583E-06 0.001098 a 3.064E-07  0.002515
c 179* 0.00002709 c 135.3* 0.0001447
Mo 0.0247* 0.004493 Mo 0.0266* 0.002828
1 -0.01241* 0.004113 p 0.9713%* 0.002297
T 0.01879* 0.001799 ¥ 0.8608* 0.009808
I -0.004641* 0.00171
T 0.006705*  0.002265
Ln likelihood 19 675 19 783

Table 3: This table shows ML estimates of the component GARCH model parameters for daily returns
on three indices from 1988-2011. Estimates of the parameters are obtained using daily total returns from
January 4, 1988 to December 31, 2010 on the Dow Jones Industrial Average (DJIA), the Deutscher Aktien
Index (DAX 30) and the FTSE 100 indices. Results that are significant at the 5% significance level are
reported with a *.

DJIA DAX30 FTSE100
Parameter Estimate Standard error Estimate Standard error Estimate Standard error
/} 2.041%* 0.01736 0.8354* 0.008361 1.758%* 0.01505
B 0.6774%* 0.002489 0.6238* 0.004278 0.941* 0.006124
« 2.438E-07 0.01794 3.754E-06 0.009018 2.367E-06 0.005406
T 3383* 0.001181 209.5* 0.00003462 124.9* 0.00001346
w 1.616E-06 0.001543 3.802E-06 0.002335 9.902E-07 0.003756
p 0.9844* 0.001581 0.979* 0.002421 0.9907* 0.003765
© 2.932E-06 0.0009801 4.517E-06 0.002363 1.852E-06 0.005322
P 101.4* 0.0003313 102.6* 0.0003509 04.78%* 0.0007927
Ln likelihood 19667 17952 19582
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Table 4: This table shows ML estimates of the AR-Jump model parameters for the three indices’ daily
returns, 1988-2011. Estimates of the parameters are obtained using daily total total returns from January
4, 1988 to December 31, 2010 on the Dow Jones Industrial Average (DJIA), the Deutscher Aktien Index
(DAX 30) and the FTSE 100 indices. Results that are significant at the 5% significance level are reported

with a *.
DJIA DAX30 FTSE100

Parameter Estimate Standard error Estimate Standard error Estimate Standard error
A, 3.629* 0.00575 2.454* 0.004563 3.052* 0.00581
Ay -1.635E-12  27.26 -1.635E-12  6.521 -1.635E-12  3.448
w -4.302E-17 41.39 -4.302E-17 10.55 -4.302E-17 2.148
b 0.9777* 0.00346 0.9793* 0.002791 0.9894* 0.002248
a 3.398E-07  0.002595 4.075E-07  0.002559 2.788E-07  0.002835
c 143.4* 0.0001273 121.8* 0.0001147 9.943* 0.0001262
Mo 0.02964* 0.002312 0.02707* 0.002901 0.02485* 0.002264
p 0.9654* 0.002342 0.9698* 0.002332 0.9769* 0.002561
5 0.9999* 0.4766 0.8409* 0.0105 0.9999* 0.3896
1 -0.003805* 0.001508 -0.004573* 0.001667 -0.003562*  0.001395
T 0.006958*  0.001029 0.009137*  0.0009207 0.006212*  0.001042
Ln likelihood 19827 18233 19719
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