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Abstract   

The main objective of this paper is to address, in an intertemporal framework, the issue of using 

storable commodity futures as vehicles for hedging purposes when, in particular, the convenience yield 

as well as the market prices of risk evolve randomly over time. We derive optimal demands of an 

unconstrained investor endowed with a CRRA utility function. We suggest various decompositions of 

this demand allowing an investor to assess the impact of each and every state variable on optimal 

demands and to specify the role played by each risky asset. In particular, the convenience yield has a 

strong impact on the speculation and hedging components and its orthogonal risk is hedged by the 

futures contract. Moreover, optimal demands can be computed in a simple recursive way, which, 

combined with quasi-analytical solutions, may facilitate the use of our model for practical 

considerations.   
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1. Introduction 

Futures markets have experienced a dramatic growth, worldwide, of both trading volume and contracts 

written on a wide range of underlying assets. These features make it easier to use futures contracts as 

hedging instruments against unfavorable changes in the investment opportunity set, i.e. changes in state 

variables describing the economic/financial environment. The growing activity of these markets has 

been accompanied, since the original normal backwardation (Keynes, 1930; Hicks, 1939) and the 

theory of storage (Kaldor, 1939; Working, 1949; Brennan, 1958), by a substantial body of literature 

devoted to pricing and hedging with futures contracts. Besides, commodities are considered by fund 

managers as an alternative asset class to traditional assets such as stocks and bonds. Indeed, 

commodities are supposed to be good (stocks and bonds) portfolio diversifiers, and efficient hedging 

instruments against the inflation risk. Although, a significant empirical literature examines these two 

commodities’ properties (see, for example, Erb and Harvey, 2006; Gorton and Rouwenhorst, 2006; Kat 

and Oomen, 2007 ; Daskalaki and Skiadopoulos, 2011), to the best of our knowledge, there is no paper 

dealing with the question of how to hedge risks with commodity futures, in particular. The main 

objective of this paper is to address, in a continuous-time context, the issue of using storable 

commodity futures, by an unconstrained investor1, as vehicles for hedging purposes.  

 An abundant literature has been devoted to pricing commodity futures2. The models developed 

explain the evolution of the futures prices through the random evolution of several relevant state 

variables. The stochastic processes of these variables are specified exogenously. The convenience 

yield, in accordance with the theory of storage, turns out to be the crucial variable, which constitutes 

one of the main differences between spot commodity prices and prices of financial assets. The recent 

sharp increase and then fall in commodity prices has revived the interest in commodity risk 

management. Futures contracts are major tools used by investors for hedging in order to mitigate their 

exposure to changes in commodity prices. Surprisingly, while there are a number of models dealing 

                                                   
1 The unconstrained investor is allowed to freely trade on the primitive assets, namely the underlying spot asset and, if need 

be, other risky assets. 

2 See, for instance, Gibson and Schwartz (1990), Schwartz (1997), Hilliard and Reis (1998), Miltersen and Schwartz (1998), 

Yan (2002), Sorensen (2002), Nielsen and Schwartz (2004), Casassus and Collin-Dufresne (2005) and Chiarella et al. (2009). 
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with futures hedging, to the best of our knowledge, the specific case of commodity futures contracts 

with a stochastic convenience yield has not yet been addressed in the relevant literature3. However, it is 

widely recognised that the convenience yield evolves randomly over time resulting in a stochastic 

investment opportunity set. Thus, in a multi period setting, non-myopic investors have a demand for 

intertemporal hedging stemming from the convenience yield risk. Moreover, a growing number of 

empirical studies on commodity return predictability stress the important role of the convenience yield, 

in particular (see, for instance, Fama and French, 1987, 1988; Besembinder and Chan, 1992; Khan et 

al., 2007; Hong and Yogo, 2009). In addition, the evidence of predictability is consistent with time-

varying risk premiums in commodities. In our environment, to the extent that spot commodity prices, 

futures prices and inventory decisions are related (see, for example, Brennan, 1958; Litzenberger, 

Rabinowitz 1995; Routledge et al., 2000), we would expect market prices of risk to be stochastic. This 

is in line with some papers studying optimal asset allocation with stochastic prices of risk (see, for 

example, Kim and Omberg, 1996; Lioui and Poncet, 2001; Brennan and Xia, 2002; Wachter, 2002; 

Detemple et al., 2003; Sangvinatsos and Wachter, 2005; Lioui, 2007; Liu, 2007).  

 This paper provides a model of optimal demand that could better account for the way both the 

stochastic convenience yield and stochastic (affine) market prices of risk affect the optimal demand of 

an unconstrained investor4. In order to do so, the economic framework retains the spot commodity 

price, the instantaneous interest rate and the convenience yield as the relevant imperfectly correlated 

mean-reverting state variables associated with the dynamics of the futures price5. The optimal demand 

for commodity futures contracts is derived for an investor who maximizes the expected constant 

                                                   
3 An exception is Hong (2001) whose economic environment and objective differ considerably from ours in that he examined 

the impact of a stochastic convenience yield on the term structure of open interest, i.e., the total number of contracts 

outstanding. 

4 Other theoretical models examining dynamic asset allocation with futures contracts (see, among others, Ho, 1984; Stulz, 

1984; Adler and Detemple, 1988a, b; Duffie and Jackson, 1990; Briys et al., 1990; Duffie and Richardson, 1991; Lioui et al., 

1996) deal with a constraint utility maximizer investor.  

5 As the goal of this paper is not the valuation of futures contracts per se, we follow the reference models in the literature, 

Schwartz (1997), Hilliard and Reis (1998) and Casassus and Collin-Dufresne (2005), and choose these three commonly used 

and well identified variables. However, the setting can be extended to a multidimensional state variables space. 
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relative risk aversion (CRRA) utility function of her (his) lifetime consumption and final wealth by 

following the no-arbitrage martingale approach (Karatzas, Lehoczky and Shreve, 1987; Cox and 

Huang, 1989). This framework takes into account the main characteristics of commodity markets and 

provides explicit solutions up to resolution of ordinary differential equation (ODEs) (see Liu, 2007) for 

the optimal unconstrained investor’s demand, which is classically composed of a speculative part and 

of a hedging term.  

A thorough study of the speculative and of the hedging components allows us to enrich the 

analysis of optimal demands by going beyond the existing studies by suggesting various 

decompositions. This is accomplished by introducing into the economic framework two synthetic 

assets replicating the orthogonal sources of risk of the interest rate and the convenience yield6. Usually, 

in a continuous-time framework, papers obtain general formulae for these two components without 

deriving specific formulae for each asset. In the case of futures contracts for a constrained investor, 

Adler and Detemple (1988 a, b) suggested expressions for the futures contract and the spot. We 

generalize this result along the lines of our framework by deducing the individual speculative and 

hedge proportions invested in the spot commodity, a discount bond and the futures contract, which may 

be computed in a useful recursive way underlying the interactions between risky assets demands. The 

position, short or long, in each asset, may therefore be easily calculated and the economic importance 

of some commodity markets features may be examined. In particular, simulations reveal that mean-

reversion in the state variables and in the prices of risk as well as the correlation between the state 

variables determine the sign of the speculative and hedging positions. Moreover, the volatility of the 

convenience yield and the price of risk associated with it appear to play a prominent role in 

determining these positions.   

As a consequence of the calculation of the individual proportions for each asset, our analysis 

clarifies the role played by the primitive assets and the futures contract when speculating and hedging. 

                                                   
6 An orthogonal source of risk is related to the construction of correlated Brownian motions. It corresponds to the Brownian 

motions associated with the short rate and the convenience yield, which are not correlated with the spot commodity price.  
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Our analysis also calls into question Breeden (1984) result7 by assigning primitive assets a specific 

task: hedging the orthogonal risk of the (log) spot commodity and the short rate. Besides, the 

orthogonal risk associated with the convenience yield is uniquely hedged by the futures contract.  

An important question is to know which state variables should be included in the investment 

opportunity set and how they affect optimal demands. The relevant literature has not explored this 

question. In our model, the investor is able to assess the influence of the state variables on her (his) 

optimal demand and can therefore rule on the relevance of the investment opportunity set. Indeed, the 

impact of the state variables on the optimal hedging proportions is measured through the sensitivity of 

an investor-specific bond on the state variables. Especially, simulations show that the convenience 

yield has a strong effect on the speculative proportion and on the hedging proportions as well for the 

three risky assets, while the effect of the short rate is less pronounced. 

The remainder of the paper is organized as follows. In section 2, the economic framework is 

described and the investor’s optimization problem is formulated. Section 3 is devoted to the derivation 

of the optimal asset allocation for the unconstrained investor. An illustration of the behavior of this 

demand, via a numerical example, is given in section 4. Section 5 offers some concluding remarks and 

suggests some potential future extensions. All the proofs have been gathered in the Appendix.  

 

2. The general economic framework 

Consider a continuous-time frictionless economy. The uncertainty in the economy is represented by a 

complete probability space (Ω, F, P) with a standard filtration [ ]{ }TtFF t ,0: ∈= , a finite time period 

[0, T] with T > 0, the historical probability measure P and a 3-dimensional vector of independent 

standard Brownian motions, ( ))( ),(),()( ' tztztztz vuS= , defined on ( )F,Ω , where ′ stands for the 

transpose.  

                                                   
7 Only one model (Breeden, 1984) studied optimal hedging in commodity futures markets (the convenience yield is not 

modelled) in the case of an unconstrained investor when the futures contracts are written on the state variables and have 

instantaneous maturity. As a consequence, the primitive assets are ineffective in hedging the risk of the state variables. 
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 In this section, following Schwartz (1997), Hilliard and Reis (1998) and Casassus and Collin-

Dufresne (2005), three imperfectly correlated factors are assumed to be associated with the dynamics 

of the futures prices: the logarithm of spot commodity price, X(t) = Ln (S(t)), the instantaneous riskless 

interest rate, r(t), and the instantaneous convenience yield, δ(t). In the sequel of the paper, (.)iλ  and iσ  

stand for the market prices of risk related to the state variables and the strictly positive instantaneous 

volatility of the state variables respectively, while ρij, j≠iwith , denotes the correlation coefficient for 

)(),(),( ttrtXi δ= . klΣ , l≠kwith  represents either the covariance between the assets or between the 

assets and the state variables. [ ]'' )()()()( ttrtXtY δ=  is the vector of the state variables that 

describes the economy.  

 X(t) satisfies the following stochastic differential equation (SDE hereafter): 

 )(
2

1
))(),(),(()()()( 2 tdzdtttrtXttrtdX SSSXS σσδλσδ +







 −+−=  (1) 

with initial condition LnS(0)≡LnS.  

The short rate is governed by the following stochastic process: 

 ( ) [ ])()()()()( tdztdzdttrttdr uurSsrr ρρσαϑ ++−=  (2) 

with initial condition r(0)≡r. The drift in the stochastic process of the short rate is a deterministic 

function, )(tϑ , such that the model incorporates all the information present in the current term 

structure (see Hull and White, 1990; Heath et al., 1992). 

02
2 )(

),0(
),0()( XrSrr tD

t

tf
tft λσρσαϑ α ++

∂
∂+= , where f(0,t) describes the initial forward yield curve 

and ( ) αα
α /1)( 2

2
tetD −−= . α is the constant speed of mean reversion of the short rate, 0Xλ  is specified 

below and 21 Srur ρρ −= .   

The instantaneous convenience yield evolves stochastically over time by following a mean-

reverting process:  

 ( ) [ ] )()()()()( tdztdztdzdttktd vvuuSS δδδδ ρρρσδδδ +++−=  (3) 

with initial condition δ(0)≡δ. The convenience yield has a tendency to revert to a constant long-run  
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convenience yield, δ , with a speed of mean-reversion k. Empirical studies (see Fama and French 1988, 

and Brennan 1991) found that the convenience yield should be specified by a mean-reverting process. 

ur

SSrr
u ρ

ρρρρ δδ
δ

−=  and 
ur

rSSrrSSr
v ρ

ρρρρρρ
ρ δδδδ

δ
21 222 +−−−

= .  

The market prices of risk associated with the state variables are not constant but stochastic and 

depend on the levels of the state variables. To allow for an analytical tractability of our model, we opt 

for an affine specification of these prices of risk. Assuming random prices of risk differentiates our 

model from the vast majority of the models exploring commodity futures pricing (a notable exception 

is Casassus and Collin-Dufresne, 2005). More significantly, with regard to our study, stochastic prices 

of risk related to each state variable also distinguish our model from those dealing with dynamic asset 

allocation and hedging which usually consider only one stochastic price of risk (see also Sangvinatsos 

and Wachter, 2005; Liu, 2007). This will have key implications on the investor’s optimal portfolio 

rules. To characterise the dependence of the spot price on the level of inventories (see, for instance, 

Brennan, 1958; Dincerler et al. 2005), the price of risk associated with the (log) of the spot price 

process is an affine function of the level of both the (log) of the spot price and the convenience 

yield: ( ) )()()(),( 0 ttXttX XXXXX δλλλδλ δ++= . The prices of risk related to the interest rate and the 

convenience yield are also affine functions:( ) )()( 0 trtr rrrr λλλ +=  and ( ) )()( 0 tt δλλδλ δδδδ += . 

δδδδ λλλλλλλ  and ,,,,, 000 rrrXXXX  are constants. λ(t) is a stochastic vector of the market prices of risk: 
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where Yλλ  and 0  are given in Appendix A. 

In addition to the spot commodity, there are in the economy a locally riskless asset, the savings 

account, such that: 








= ∫
t

dssrt
0

)(exp)(β , with initial condition 1)0( =β , and two risky traded assets. 

The first risky security is a discount bond with maturity BT , whose price, at time t, BTt ≤≤0 , is 
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{ }),(),()(exp),(),,( BBBB TtCTtDtrTtBTtrB +−=≡ α . The second additional risky asset is a futures 

contract written on a commodity with maturity HT , whose price, at date t, BH TTt ≤≤≤0 , 

{ }),(),()(),()()(exp),(),),(( HHHHH TtKTtDtrTtDttXTtHTttYH ++−=≡ ακδ . xeytD tyx
x /)1(),( )( −−−=  

and ),( and ),( HHBB TTKTTC  are deterministic functions8. Assuming that the risky securities price 

functions are twice continuously differentiable in the state variables, their price dynamics can be 

written as follows:  
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 [ ])()()()( tdzdtttItdV V σµ +=  

with the initial condition V(0)≡V. [ ] ' ),(),()()( HB TtHTtBtStV = , )(tIV  is a diagonal matrix, 

),( and ),( ),(),( HHBBS TtTttt µµµµ  represent the instantaneous expected rate of returns of the vector 

V(t), the spot price, the discount bond and the futures price respectively. σ  is the 3-dimensional 

volatility matrix, which is of full rank, hence the market is dynamically complete. 

),(),(),( HkSHSrSHHS TtDTtTt δδσρσρσσ −+= , ),(),(),( HkuHurHHu TtDTtTt δδσρσρσ −=  and 

),(),( HkvHHv TtDTt δδ ρσσ = . The volatility of the discount bond, ),(),( BrB TtDTt ασσ = . 

[ ]0),(),(),( '
BurBsrBB TtTtTt σρσρσ =  and [ ]),(),(),(),( '

HHvHHuHHSHH TtTtTtTt σσσσ −=  are the 

diffusion vectors of the discount bond and the futures price respectively.  

 Since we are interested in futures contracts, the futures price changes are credited to or debited 

from a margin account with interest at the continuously compounded interest rate r(t). The futures 

contract is indeed assumed to be marked to market continuously rather than on a daily basis, and then 

to have always a zero current value. The current value of the margin account, M(t), is then equal to:  

 ∫ ∫








=
t

HHH

t

u

TudHTudvvrtM
0

),(),()(exp)( θ  (5) 

                                                   
8 There is no need to specify the expression of C(t,TB) and K(t,TH), since it will not be used in the rest of the paper.     
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Applying Itô’s lemma to the above equation yields: 

 ),(),()()()( HHH TtdHTtdttMtrtdM θ+=  (6) 

where ),( HH Ttθ  represents the number of the futures contracts held at time t.  

 The unconstrained investor, endowed with an initial wealth W(0), has an investment horizon TI, 

BHI TTTt ≤≤≤≤0 , and (s)he is endowed with CRRA preferences over consumption and terminal 

wealth: 

γγ
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η
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−+

−
=
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−−

−
−−

∫ 1
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)1(

1
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))(,(

1
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)( ItT
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ts
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TW
eads

sc
eaTWcU I

I

 (7) 

where U(.) is a Von Neumann-Morgenstern utility function satisfying the usual Inada conditions, c(t) ≥ 

0 and )( ITW  represent consumption at time t and the agent’s terminal wealth respectively. η is a 

subjective discount rate and a is the relative weight of the intermediate consumption and the terminal 

wealth. When 1=γ , the “reference” utility in the finance literature is obtained, that is, the logarithmic 

utility function characterizing a Bernoulli investor: 
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−−−− −+= ∫
ηη . In this case, the investor behaves 

myopically in such a way that his (her) optimal demand will not include any component associated 

with a stochastic opportunity set.  

 To determine the optimal consumption and asset allocation, each investor maximizes the 

expected utility function of her (his) lifetime consumption and terminal wealth. The market described 

above is dynamically complete for ( )HBI TTT ,min≤ , since the number of sources of risk (Brownian 

motions) is equal to that of the traded risky securities. Karatzas et al. (1987) and Cox and Huang (1989; 

1991) used the martingale approach to study the consumption-portfolio problem in a continuous-time 

setting. Their main idea is to transform this dynamic problem into the following static one:  
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where [ ] [].tt EF ≡⋅Ε  denotes the expectation, under P, conditional on the information, Ft, available at 

time t and 








++== ∫∫∫
ttt

udzuduuduur
t

t
tG

0

'

0

2

0

)()()(
2

1
)(exp

)(

)(
)( λλ

ξ
β

, with G(0) = 1, represents the 

numéraire or optimal growth portfolio such that the value of any admissible portfolio relative to this 

numéraire is a martingale under P (see Long, 1990; Merton, 1990; Bajeux-Besnainou and Portait, 

1997).  stands for the norm in R3 and )(tξ  is the Radon-Nikodym derivative of the so-called, 

unique, risk-neutral probability measure Q equivalent to the historical probability P, such that the 

relative price (with respect to the savings account chosen as numéraire), of any risky security is a Q-

martingale (see Harrison and Pliska, 1981).  

  

3. Optimal dynamic strategies 

Having described the economic framework, we shall examine the optimal consumption and portfolio 

strategy problem for our unconstrained investor when the financial market is dynamically complete. 

 Given the CRRA utility function and the numéraire portfolio )(tG , the solution to the static 

problem (8), which is a standard Lagrangian optimization problem, determines the investor’s optimal 

consumption and wealth at time t: 

 
( )

),,(
)(

*
*

ITt

tW
tc

γΦ
=  (9) 

 ( ) ),,()(
11

*

ITttGtW γζ γγ Φ=
−

 (10) 

where ζ  is the Lagrangian associated with the static program.  
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is the wealth-to-consumption 

ratio. 

The resolution of the expectation in ),,( ITtγΦ  may be simplified by making an appropriate 

change of probability measure. This change holds for any diffusion process and for any price of risk. 

We suggest the measure ( )ITP ,γ , called the CRRA TI-forward probability measure or the CRRA-forward 
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measure (see Appendix A). In a recent article, Detemple and Rindisbacher (2009) have substantially 

generalized the work of Lioui and Poncet (2001) and Munk and Sorensen (2004) by using the forward 

probability measure (Jamshidian, 1989; Geman et al., 1995) and a zero-coupon bond, ( )ITtB , , as 

numéraire, to derive optimal portfolio rules in a very general setting for non-Markovian processes and 

for concave non-specified utility functions. To obtain optimal demands, Rodriguez (2002), Stoikov and 

Zariphopoulou (2005), Björk et al. (2008) and Buraschi et al. (2010) used a change of probability 

measure related to a CRRA utility function, but in this paper, we attempt to clarify this change of 

measure. Although, Detemple and Rindisbacher’s change of probability measure is different than the 

CRRA one, our intermediate results are similar to those of these authors and can be considered as a 

special case of their very general results.     

Under ( )ITP ,γ , ),,( ITtγΦ  can be rewritten in the following way  

 ),,()1(),,(),,(
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1
)(
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−+=Φ ∫  (11) 

where ( ) ( )III TtBTtBTt ,,),,(
1

1

γγγϕ −=  and ( )ITtB ,γ  is given by: 
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2 γγγ
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 (12)  

Inspired by the relevant literature of the term structure of interest rates (see Duffie and Kan, 

1996; Dai and Singleton, 2000; Ahn et al., 2002), ( )ITty ,γ  is a quadratic function and ),( ITtBγ  may be 

viewed as an exponential quadratic function of the state variables: 

)(),,()(
2
1

)(),,(),,(,       2
'

10 tYTtAtYtYTtATtA)T(ty IIIIγ γγγ ++=  (13) 

 






 ++= )(),,()(

2

1
)(),,(),,(exp),( 2

''
10 tYTtBtYtYTtBTtBTtB IIII γγγγ  (14) 

with the terminal condition 1),( =II TTBγ  implying that ( ) ( ) ( ) 0,,,,,, 210 === IIIIII TTBTTBTTB γγγ . 

( )ITtA ,0 , ( )ITtA ,1  and ( )ITtA ,2  are given in Appendix B. 

),( ITtBγ , which results from the agent’s consumption-investment problem solution, is 

investor-specific, since it is a function of her (his) risk aversion coefficient and horizon. As its 
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expression, given in equation (12), is formally similar to that of a discount bond, it will be qualified to 

as the investor-specific discount bond. ),( ITtBγ  is stochastic because of the stochastic character of the 

prices of risk. For a more risk-averse investor than the logarithmic utility agent (γ > 1), ( ) 0, >ITtyγ , 

and ),( ITtBγ  is like a discounting factor. For example, when the investor’s horizon increases, it tends 

very quickly to zero. Conversely, when (s)he is less risk-averse than the Bernoulli investor (γ <1), 

( ) 0, <ITtyγ , and ),( ITtBγ  is comparable to a compounding factor, in which case it tends to infinity for 

an increasing TI. ( )ITty ,γ  may be considered as a state variable incorporating the risk generated by the 

prices of risk and the yield curve. The investor-specific bond reveals that investors have a demand 

for bonds to satisfy their needs in terms of their horizon, their risk-preferences and their desire 

to hedge stochastic prices of risk. Under ( )ITP ,γ , the investor’s optimization problem consists in 

calculating two bonds. The first is a discount bond (traded or synthetic) with a maturity date equal to 

the investor’s horizon and is associated with interest rate risk (see Lioui and Poncet, 2001; Munk and 

Sorensen, 2004 and Detemple and Rindisbacher, 2009), while the second is an investor-specific 

discount “bond” (synthetic) reflecting time-variation in the prices of risk. Although ),( ITtBγ  is not a 

traded asset, it can be, however, manufactured, in a complete market, by existing securities. The second 

“bond” reveals that investors have a demand for bonds to satisfy their needs in terms of their horizon, 

their risk-preferences and their desire to hedge stochastic prices of risk. The investor’s consumption-

wealth problem reduces to the computation of the two bonds, which, by referring to the yield curve 

literature, is well-known and does not require a specific method.  

 At any date t, the wealth of the investor is composed of )(tSθ , )(tBθ  and )(tβθ  units of the 

spot commodity, the discount bonds and the riskless asset respectively, and the margin account:  

 )()()(),()()()()()()(
0

tMttTtBtduuuStSttW BB

t

S +++








+= ∫ βθθδθ β  (15) 

Applying Itô’s lemma to the above expression and by the self-financing property, the dynamics 

of the unconstrained investor’s wealth may be written: 
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with the initial condition W(0) and [ ])()()()( ' tttt HBS ππππ = . 
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θπ ≡  denote the proportions of the total wealth invested 

in the commodity, the discount bond and the futures contract respectively. In the sequel of the paper, 

we shall distinguish the speculative proportions, )(tMVπ , from the hedging proportions, )(tHIRπ , 

related to the discount bond ( )ITtB ,  and those, )(tHMPRπ , related to the investor-specific bond, 

( )ITtB ,γ . In order to optimally determine these proportions, the unconstrained investor solves the static 

program (8). The result obtained is presented in the following proposition.   

 

Proposition 1. Given the economic framework described above, the optimal demand for risky assets by 

the unconstrained investor is given by: 
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The optimal asset allocation may be decomposed in:  

a) a traditional mean-variance component 
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b) a hedging component related to the stochastic fluctuations in the instantaneous return of a discount 

bond with maturity date equal to the investor’s horizon   
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c) a hedging component related to the stochastic fluctuations in the instantaneous return of the 

investor-specific discount bond with maturity date equal to the investor’s horizon  
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where, ( )IBIBI TtTtTt ,),(
1

1),,(
γ

σσ
γ

γσϕ +







−= , ( ) ( ) ( )[ ])(,,,,, 21

' tYTtBTtBTt IIYIB γγσσ
γ

+= , 'σσ=Σ  

and '
YYY σσ=Σ . ( )ITtB ,,1 γ  and ( )ITtB ,,2 γ  are solutions to the following ordinary differential 

equations (ODEs): 

( ) ( ) ( ) ( ) ( ) ( ) 0,,,,,,,,,,,, 2222
'

22 =−Σ+−− IIYIIYYIIt TtATtBTtBTtBTtBTtB γγγγµµγγ γγ

( ) ( ) ( ) ( ) ( ) ( ) 0,,,,,,,,)(,,,, 1122
'

1
'

1 =−Σ++− IIYIIIYIt TtATtBTtBTtBtTtBTtB γγγγµγµγ γγ  

with the terminal condition ( ) ( ) 0,,,, 21 == IIII TTBTTB γγ . ( ) ( )ItIt TtBTtB ,, and ,, 21 γγ  are the first order 

derivatives with respect to t. The constant and deterministic functions γµY and )(tγµ are given in 

Appendix B. 

Proof. See Appendix B. 

Similar results can be found in other papers when. The main important difference is that these 

results are expressed in terms of the two discount bonds. As shown in Proposition 1, the optimal 

demand for risky assets (equation 17) can be decomposed into two parts. The first one is the traditional 

mean-variance speculative portfolio proportional to the investor’s risk tolerance (Proposition 2 below is 

dedicated to this term), whereas the second part is a hedge portfolio (see Proposition 3 below). This 

portfolio, which corresponds to the second component of the right hand side of equation 17, serves as a 

hedge against the stochastic behavior of the instantaneous returns of ),,( ITtγΦ  and ),( ITtΘ . Under the 

CRRA-forward measure, the investor does not hedge against changes in each and every state variable 

composing the investment opportunity set, but rather (s)he hedges against unfavorable shifts in 

),,( ITtγΦ  and ),( ITtΘ , which encompass all the uncertainty in the investment opportunity set.  

),,( ITtγΦ  and ),( ITtΘ  depend on the two bonds, ),( ITtB  and ),( ITtBγ . These two bonds 

represent, under the CRRA-forward measure, the two sources of risk in the economy. As a 

consequence, the hedging demand can be split in two components. The first one reveals how the 

investor should optimally hedge against random fluctuations in the instantaneous return of the discount 
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bond ),( ITtB . The second ingredient hedges against the risk generated by the investor-specific 

discount bond and arises because the prices of risk are stochastic. Notice that if market prices of risk 

were assumed to be constant or deterministic, then only the discount bond ),( ITtB  risk would be likely 

to be hedged by the investor. Although this term is similar in essence to that of other articles, since it 

captures the risk associated with the prices of risk, it is expressed in a different manner in our paper. In 

Detemple and Rindisbacher (2009) model, which is more general than ours, this component was 

couched in terms of the density of the forward measure, while our formula (20) highlights the role 

played by the investor-specific bond ),( ITtBγ . In Lioui and Poncet (2001) paper this addend depends 

on an unknown volatility function of the forward measure density, which was left unspecified. In 

contrast, we explicitly specify the volatility ),( IB Tt
γ

σ . These differences come from the change of the 

probability measure operated: on the one hand, the forward measure in the case of these papers, and, on 

the other hand, the CRRA-forward measure in our case.  

 The next propositions are devoted to a thorough study of the speculative and hedging terms. 

They try to elucidate the consequences on these terms of the stochastic opportunity set, especially the 

stochastic convenience yield, to highlight the role played by the traded primitive assets and the futures 

contract as hedging instruments, and, for practical considerations, to implement these terms. Moreover, 

Proposition 1 does not allow an investor to compute the optimal proportions for each risky asset. In this 

respect, we extend the previous literature (see also Adler and Detemple, 1988a, b) by deriving 

individual weighs for each asset.    

To achieve these goals, two assets may be introduced into our analysis whose prices are 

denoted ),( Bu TtB  and ),( Hv TtH . These assets are assumed to be cash assets, i.e., they are not marked 

to market, and can be duplicated by a portfolio of four assets, namely the riskless asset, the discount 

bond with maturity TB, the spot commodity and the futures contracts. They reflect orthogonal risks. The 

first asset is associated with the orthogonal risk of the interest rate, while the second one is linked to 

that of the convenience yield. Note that the existing spot commodity spans the risk of )(tzS .  

 )(),()(
),(
),( ' tdzTtdttr

TtB

TtdB
BBu

Bu

Bu σ−=  
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 )(),()(
),(
),( ' tdzTtdttr

TtH

TtdH
HHv

Hv

Hv σ+=  

with initial conditions ),T(HTB HuBu 0 and  ),0(  and where [ ]0),(0),( '
BurBBu TtTt σρσ =  and 

[ ]),(00),( '
HHvHHv TtTt σσ −= . 

 Equation (18) may further be manipulated to obtain more insightful expressions by introducing 

the two synthetic assets into our analysis. This leads to the following proposition.  

 

Proposition 2. The optimal mean-variance proportions can be couched in a recursive way: 
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Proof. See Appendix C. 

This formulation is useful for computational purposes since speculative demands are expressed 

in terms of excess returns, volatilities and covariances, and they are calculated in a recursive way: the 

speculative demand of futures contracts is first derived, which allows one then to determine that of the 

discount bond and finally the proportion of the spot commodity can be obtained as a function of the 

other two demands.   

 The investor’s speculative demand consists of a fund including an element specific to the 

futures contract and a component proper to the two primitive risky assets. This decomposition sheds 

light on the role played by the orthogonal risks captured by the two replicable assets and the spot 

commodity. The speculative demand for the futures contract depends on the excess return and the 

variance of the synthetic asset, ),( Hv TtH . It reflects the investor’s anticipations about the orthogonal 

source of uncertainty of the convenience yield. The futures contract is thus the sole asset that will be 

used by the investor to directly form her (his) expectations about the future evolution of the 

convenience yield. It follows that the mean-variance portfolio for futures contracts will be the only 
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demand depending uniquely on the price risk of the convenience yield. The speculative demand for the 

discount bond is a function of the excess return and the variance of the synthetic asset, ),( Bu TtB , which 

spans the orthogonal risk of the interest rate. Because of the correlation of the futures contract with the 

short rate, )(tMV
Bπ  is, however, modified by a second term. This additional term involves the mean-

variance portfolio for futures contracts weighted by the usual covariance/variance ratio 

),(),(

),,(
'

BBuBBu

BHHB

TtTt

TTt
u

σσ
Σ

. A similar argument applies to the speculative demand for commodities. The 

excess return of the spot commodity divided by its variance, spanning the orthogonal risk of the 

commodity, is now adjusted by two terms since the spot commodity is correlated with both the futures 

contract and the discount bond.  

The interaction between the three components of the investor’s speculative demand can be 

examined through the covariances between the assets. On the one hand, since ),( BSB TtΣ  is supposed to 

take low real values, it has a weak impact on the investor’s speculative position on the spot commodity. 

As expected, unlike )(tSπ , the proportion invested in the discount bond is strongly influenced by 

),,( BHHB TTt
u

Σ , and therefore by the speculative demand of the futures contracts. On the other hand, as 

the spot commodity and the futures contract are highly positively correlated, the speculative proportion 

of the commodity will be largely driven by that of the futures contract. Thus the parameters of the 

convenience yield and its price of risk are of paramount importance in determining the positions of the 

spot commodity and the discount bond. 

 

Proposition 3. a) The optimal hedging proportions spawned by changes in the discount bond ),( ITtB  

(interest rate risk) write:  
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b) The optimal hedging proportions generated by the investor-specific bond (market prices of risk) may 

be expressed in a recursive way for each risky asset: 
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c) The optimal hedging proportions generated by the investor-specific bond (market prices of risk) may 

be decomposed in the following manner for each and every state variable: 
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where { })(),(),( ttrtXi δ∈ , I is a 3-dimensional identity matrix and Il, l = 1, 2, 3, represent its columns. 
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,
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γ

γ
γ =Ψ  and ( )ITtB

i
,γ stands for the first 

order derivative of ( )ITtB ,γ  with respect to each state variable.  

Proof. See Appendix D. 

Proposition 3 above has the traditional Merton-Breeden flavor as it disentangles the hedging 

proportions for each and every state variable. Indeed, the change of measure described above allows us 

providing a decomposition of the hedging element in terms of two discount bonds instead of an 

arbitrary finite number of Merton-Breeden terms equal to that of the state variables. These two bonds 

embed the risk associated with the short rate and the prices of risk respectively, the latter being 
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functions of the state variables. However, in order to investigate both the role of the risky assets and the 

impact of the state variables on the optimal hedging portfolio, that of the convenience yield especially, 

we further decompose the hedging components for each variable. In sharp contrast to the classical 

Merton-Breeden elements, our optimal hedging proportions inherit the advantages of Proposition 1, in 

that they depend on the features of the two bonds above mentioned.  

According to Proposition 3, the hedging demand for the discount bond (equation 24) is the only 

one including a term that hedges the risk due to the stochastic nature of the interest rate through 

),( ITtB . This component is proportional to the ratio of the volatilities of the bonds with maturities 

respectively equal to TI and TB. When the two maturities coincide, this ratio is equal to one, and the 

hedging demand is merely a function of the two bonds ),( ITtB  and ),( ITtBγ . This is also the sole 

ingredient in the agent’s optimal demand evolving deterministically over time. This feature is quite 

general, in the sense that it is not related to the Gaussian character of the short rate. Insofar as the 

variance of the interest rate is proportional to its level this characteristic remains valid. This would be 

the case, for instance, if the short-rate followed a square-root process.   

Parts b) and c) indicate that the hedging term that stems from the stochastic character of the 

investor-specific bond may admit two different decompositions pursuing two different objectives. The 

first, in the spirit of the speculative components (Proposition 2), expresses the hedging terms in a 

recursive way for each risky security. Furthermore, the covariances between the state variables and the 

assets which, in conjunction with the partial derivatives of ( )ITtB ,γ , determine the sign of the hedging 

demands, appear in a simple way facilitating the use of the above expressions. 

The futures contract serves to hedge the orthogonal risk of the convenience yield, while the 

discount bond and the spot commodity are employed to hedge those of the short rate and the log of the 

spot commodity respectively. Correlations between the assets imply that )(tHMPR
Bπ  and )(tHMPR

Sπ are 

appropriately adjusted to take into account for these correlations. Once again, similarly to the 

speculative elements, the parameters of the convenience yield have a heavy impact on the hedging 

terms of the spot commodity and the bond. The proportions obtained in Proposition 2 differ markedly 

from those of Breeden (1984), who, in his study, considers futures contracts with an instantaneous 
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maturity perfectly correlated with the state variables. This particular definition of futures contracts 

implies that the demand for the primitive assets that serve to hedge state variables disappears. In 

contrast, our investor elaborates her (his) strategy by including the primitive assets in order to hedge 

against the risk of the state variables. 

The second decomposition, given in expression (26), separates the hedging addend into three 

components; one for each and every state variable. In particular, introducing a stochastic convenience 

yield into the economy results in the presence of a hedging demand, )(_ tHMPR δπ , specific to this yield, 

that cannot be neglected. This equation makes it possible to disentangle the hedging element related to 

each state variable from those associated with the other variables. As a consequence, our model has the 

ability to exactly measure the impact of these hedging terms on the investor’s optimal demand. It 

allows one to assess the weight of each state variable in the hedging terms stemming from the investor 

discount bond and therefore to assess the relevance as well as the importance of the state variables 

included in the investment opportunity set when the investor’s objective is to implement hedging 

strategies. Actually, given the nature of the underlying commodity, some factors may have a strong or a 

negligible effect on these hedging elements implying that these factors may have or have not to be 

included in the opportunity set. Thus, this last may varied according to the nature of the spot 

commodity to be hedged. Since the hedging components are affine functions, the investor has, in 

addition, the possibility to separate the impact of the state variables on these components and to better 

understand the overall behavior of his (her) optimal demand.   

In the light of expression (27’), this decomposition appears in a natural way and admits an 

economic interpretation. The investor seeks an insurance against the random shifts in the price of the 

investor-specific bond. As discussed above, ( )ITtB ,γ  incorporates the prices of risk through ( )tyγ , 

which involves the state variables. The hedging demands )(_ tiHMPRπ  depend on the ratios ( )ITt
i

,γΨ . 

Since ( )ITtB ,γ  is analogous to a discount bond, these ratios determine its sensitivity on the three state 

variables (see also Wachter, 2002). In other words, each ( )ITt
i

,γΨ  assesses the sensitivity of the 

hedging demands to changes in ( )ITtB ,γ  resulting from a change in the state variables.  
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4. An illustrative example 

To get more insights on the impact of the parameters on the model, various simulations are represented 

in figures 1 to 12. We simulate the reaction of the speculative and the hedging demands to the 

investor’s horizon as well as to the state variables evolution. Table 1 summarizes the values of the 

parameters used in our simulations.  

[INSERT TABLE 1 ABOUT HERE] 

 The parameter values are partly inspired from Schwartz’s (1997) and Casassus and Collin-

Dufresne’s (2005) papers. They are chosen in order to account for some features characterizing 

commodities. Commodity futures prices are frequently below the current spot price exhibiting 

backwardation (see Litzenberger and Rabinowitz, 1995), which is equivalent to a positive risk premium 

and implies a positive convenience yield. Commodity spot prices and convenience yields follow mean-

reverting processes (e.g. Bessembinder et al., 1995), as well as the short rate, so that 0 and 0 >> kα . 

The constant components of the prices of risk are supposed to be positive, while 

0 and ,0 ,0 <<< rrXXX λ λλ δ  inducing also mean-reversion in prices of risk and strengthening that of the 

state variables (see Cassasus and Collin-Dufresne, 2005). The convenience yield and the spot price are 

related through inventory decisions (e.g. Routledge et al., 2000). During periods of low inventories, the 

probability that shortages will occur is greater, and hence the spot price as well as the convenience 

yield should be high. Conversely, when inventories are abundant, the spot price and the convenience 

yield tend to be low. It follows that a positive correlation between the convenience yield and the spot 

price may be predicted. Frankel and Hardouvelis (1985) and Frankel (1986) argued that high real 

interest rates reduce commodity prices, and vice-versa. This should imply a negative correlation 

between, on the one hand, interest rates and, on the other hand, spot prices and convenience yields. 

To analyze the impact of risk aversion, optimal demands are depicted for four degrees of 

relative risk aversion (RRA). The first one corresponds to the logarithmic function, 1=γ , in which 

case, the hedging terms vanish. The Bernoulli investor appears as the dividing line between hedging 

positions taken by investors who are more or less risk-averse. The second risk aversion parameter 

caracterizes an investor who is less risk-averse than the Bernoulli one. As pointed out by Kim and 
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Omberg (1996), the indirect utility function may explode for too low values when 1<γ . To avoid such 

a problem, we put 0.7. For a more risk-averse investor than the log-utility investor, we retain a value of 

3=γ  for our simulations. Finally, according to Mehra and Prescott (1985) risk aversion should be 

much higher than one. To take into account this feature, we choose 6=γ .  

When studying the optimal proportions as a function of the investment horizon, we let this 

horizon vary in the interval [ ]2 ,0∈IT , and we set the maturity of the futures contract and the bond such 

as 12/1+= IH TT  and 5+= IB TT  respectively. That is the futures contract and the discount bond expire 

one month and five years respectively after the end of the investor’s horizon.  

 [INSERT FIGURES 1, 2, 3, 4 ABOUT HERE]  

Figures 1 trough 4 picture the impact of the changes of the state variables on the speculative 

demand and of the γ parameter. We set the investor’s horizon 1=IT , while the other parameters values 

remain unchanged. As expected, the mean variance components are inversely related to γ and tend to 

zero as γ goes to infinity. Our numerical simulations show that the interest rate has a weak impact on 

the investor’s demand, except for the proportions specific to this variable. We shall then omit the 

figures related to the short rate and shall mainly focus our analysis on the influence of the spot 

commodity price and the convenience yield, first, on the speculative demands, and, second, on the 

hedging terms.  

To examine the role of the spot commodity, its price ranges from 80 dollars to 120 dollars. For 

low values of the spot price, the speculative component of the futures contract is positive and 

decreasing, while for high values it is negative and decreasing (see Figure 1). This result may 

essentially be explained by the price of risk associated with the orthogonal risk of the convenience 

yield, which is a function of those of the spot commodity and the convenience yield. The sign of 

( )tMV
Hπ  depends on that of ( )tvλ  since the volatility ),( HHv Ttσ  is multiplied by minus - the convenience 

yield and the future price are negatively correlated. To understand this, formally, we have 
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price of risk related to the (log)spot price ( )0<− urSuSr ρρρρ δδ  and positively to that of the convenience 

yield ( )0>δρv . On the other hand, mean-reversion in the price of risk of the (log)spot price implies 

that as the latter raises the former declines. In overall, for low values of the (log)spot price, its price of 

risk outweighs that of the convenience yield so that ( ) 0<tvλ , while for high values of the spot price 

the inverse holds. An inspection of Figure 1 shows that there exists a critical value of the spot price 

separating positive from negative speculative demands for futures contracts. In other words, the 

interaction between the prices of risk in conjunction with their mean-reverting behavior determines 

whether the speculator goes short or long.  

Unlike ( )tMV
Hπ , ( )tMV

Sπ  is positive and monotonic increasing in the spot price (see Figure 2). 

When this last is low, a high, due to mean-reversion, instantaneous expected return of the spot 

commodity is negatively adjusted by both the speculative position in the futures contract 

( )0),( >Σ HHS Tt  and in the bond ( )0),( <Σ BSB Tt . This results in a low speculative demand of the spot 

commodity and vice versa.  

To underscore the importance of the convenience yield we let it vary between –5% and +15%. 

The speculative demand of the futures contract takes negative values and is an increasing function of 

the convenience yield (see Figure 3). Following the same reasoning as for the spot price, notice that the 

effect of the price of risk associated with the convenience yield dominates that of the spot commodity 

and the speculative demand is negative. However, as the convenience yield approaches to zero and 

becomes positive the difference between the two prices of risk lessens and tends to zero. For 

sufficiently high values of a positive convenience yield the speculative demand may be positive. The 

speculative proportion of the spot commodity is positive and decreasing in the convenience yield (see 

Figure 4). Indeed, the joint effect of mean-reversion in the expected return of the spot commodity and 

the behavior of the speculative demand of the futures contract lead to this result.  

[INSERT FIGURES 5, 6, 7, 8, ABOUT HERE] 

The reaction of the hedging addends to the changes of the state variables for different values of 

the γ parameter and of the optimal demands to the investor’s horizon exhibit some features similar to 
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those reported, though in a different context, among others, by Kim and Omberg (1996), Campbell and 

Viceira (1999), Wachter (2002) and Sangvinatsos and Wachter (2005). These reactions are displayed in 

Figures 5 to 12. First, hedging positions as a function of the state variables may be short or long 

depending on the degree of risk-aversion. When γ>1, an investor facing unfavorable states of the world 

wishes to hedge against this adverse evolution of the investment opportunity set. By contrast, when γ < 

1, an investor prefers to benefit from favorable states of the world and, hence, from a “good” 

investment opportunity set. An increase in the expected return is an improvement in the investment 

opportunity set, while a decrease in the expected return represents a worsening. As can be seen in 

Figure 5, for low prices of the spot commodity ( )tHMPR
Hπ  is positive (negative) for a less risk-averse 

(more risk-averse) agent than the Bernoulli one. However, as the spot price goes up, the sign of the 

investor’s position reverses. A more risk-averse investor (γ > 1) desires to hedge the risk induced by 

time variation in the price of risk ( )tvλ , as a function of X(t). As far as ( )tvλ  remains sufficiently 

negative (the return of ),( Hv TtH is positive), this investor has a positive hedging demand, ( )tHMPR
Hπ , 

while a more risk-tolerant (γ<1) agent has a negative one and vice versa.  Figure 6 presents the impact 

of the convenience yield on )(tHMPR
Hπ . The explanation is analogous to that of the impact of the spot 

commodity price. When the convenience yield is negative, ( ) 0>tvλ  but the expected return of 

),( Hv TtH  is negative. It follows that 0)( <tHMPR
Hπ  and 0)( >tHMPR

Hπ  for γ>1 and γ<1.  

 Second, in a particular region of the state variables, however, the hedging proportions behave 

in a different manner. The authors above mentioned provided an explanation in terms of mean-

reversion in the state variables. A nonmyopic investor is aware not only about the current value of the 

prices of risk but also about their future value. As prices of risk are affine functions of the mean-

reverting state variables, when they are negative, they are expected to pass through zero and to attain a 

positive value. An investor anticipating the future evolution of the price of risk, (s)he consequently 

modifies her (his) hedging demand. For example, Figure 5 shows the evolution of ( )tHMPR
Hπ  as a 

function of X(t). For some values of the spot commodity price, when ( )tvλ  is negative but close to zero, 

the hedging demand is negative (positive) for a more risk-averse (risk-tolerant) investor. The mean-
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reversion effect is less pronounced for the convenience yield and it can take place for very high 

positive values of )(tδ , in which case the sign of the hedging proportions may be reversed (see Figure 

6). Third, the hedging terms lie, for γ = 6, between those for γ = 0 and γ = 3 meaning that for more 

risk-averse agents than the logarithmic, beyond a certain level of the risk-aversion coefficient, the 

hedging demand decreases. This feature may be explained as follows. For high degrees of risk 

aversion, investors privilege less risky assets and limit their investment in risky assets whatever the 

level of the sate variables. Fourth, the hedging components stemming from the prices of risk associated 

with the futures contract and the spot commodity, in particular, are not monotonic in IT  (Figures 11 

and 12): they are humped or inverted humped for a short horizon. This pattern may be explained by the 

mean-reverting character of the prices of risk when they attain values close to zero, in particular.  

[INSERT FIGURES 9, 10, 11, 12 ABOUT HERE] 

In addition, a clear distinction can be drawn between the mean-variance elements related to the 

interest rate (Figure no reproduced here) from those associated with the spot commodity and the futures 

contract (Figures 9 and 10). The latter are non-linear and sharply increase or decrease for a short 

horizon but they rapidly reach an asymptote for a longer term. This is due to the pattern of the synthetic 

assets price volatility, ),( HHv Ttσ : it flattens for a long horizon but is highly non-linear when the 

horizon shrinks. In contrast, the terms relative to the short rate are almost linear. Indeed, as the 

correlation between the interest rate and both the convenience yield and the commodity is low, these 

terms are essentially driven by the volatility of the bond. The latter slowly varies with the horizon, and, 

as a consequence, the demand for the bond. 

 

4. Concluding remarks 

In this paper, optimal hedging decisions involving commodity futures contracts have been studied in a 

continuous-time environment (i) for an unconstrained investor with a CRRA utility function, (ii) when 

spot prices, interest rates and, especially, the convenience yield evolve randomly over time, and (iii) the 

market price of risk associated with the spot commodity is stochastic and an affine function of the state 
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variables. In this setting, by using a suitable CRRA specific change of a martingale measure, we derive 

the investor’s optimal demand, which consists of a speculative component and two so called hedging 

terms. The first hedging component is associated with interest rates uncertainty. This term involves a 

discount bond with a maturity equal to the investor’s investment horizon. The second one deserves 

greater attention because it has some interesting properties distinguishing our results from those of 

other papers. It involves an investor-specific bond which can be used to hedge against fluctuations in 

the stochastic market price of risk. This component is composed of three hedging terms associated with 

the three state variables. They underline the role played by the primitive assets and the futures contracts 

as hedging instruments against the orthogonal risk of the state variables, the convenience yield in 

particular. Both the speculative component and the hedging terms can be couched in a recursive way 

improving the tractability of the model. The main implication of these properties is that the investor can 

measure the effect of each state variable on her (his) optimal demand and decide which of those 

variables are effectively important when s(he) pursues a hedging objective. This can be done, however, 

by exploiting the characteristics of the two bonds, i.e. the term structure of interest rates and the price 

of risk, instead of those of each and every state variable.   

The economic framework of this paper can be extended in several directions. First, the general 

setting may usefully be adapted to the investor’s allocation problem in the case of stocks paying a 

dividend. Second, commodities markets are highly volatile and spot assets exhibit jumps (see, for 

instance, Hilliard and Reis, 1998; Yan, 2002). The effect of jumps on the optimal asset allocation with 

commodities remains an open question. Third, another observed characteristic distinguishing 

commodities from financial assets is that commodity prices exhibit seasonal patterns (see Richter and 

Sorensen, 2006). It would be of great interest to examine how seasonality modifies the investor’s 

hedging behavior. Finally, it is now acknowledged in the relevant literature that the convenience yield 

is not observable: indeed, in a partially observable economy (see, for instance, Dothan and Feldman 

1986; Detemple 1986; Gennotte 1986; Xia 2001) an agent can estimate one or more unobserved state 

variable(s) given information conveyed by past observations spawned by observable state variables via 

the continuous-time Kalman-Bucy filter. One important extension would therefore be to study how the 

incomplete information affects optimal asset allocation. 



 26

Appendix A. Change of martingale measure. 

In this Appendix, we determine the martingale measure to calculate the optimal consumption and 

wealth for any diffusion processes followed by the state variables and the prices of risk.   

 From expressions (9) and (10), it can be seen that the computation of ( )**  and )( tWtc  involves 
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is the price of a discount bond of maturity TI and ( ) )(/,),( tGTtBTtR II =  is the relative price of this 

discount bond with respect to the numéraire G(t). 

The optimal wealth may be rewritten in the following convenient way:  
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Note that ),( ITtR  is a martingale under the probability measure P, which leads to an immediate 

calculation of ),( ITtΘ . In contrast, γ
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Following Geman et al. (1995), the Radon-Nikodym derivative, defining the probability 

measure ( )ITP ,γ equivalent to P, is given by: 
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We suggest the following numéraire )(),(),( tGTtTtN II γξ= , associated with ( )ITP ,γ , such that 

any financial asset divided by ),( ITtN  is a martingale under this new measure. The dynamics of this 

numéraire are governed by: 
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with the initial condition 1),0( =ITN . 

 From equation (A.2), it follows that: 
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We can use Bayes’ rule to get: 
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( )ITP ,γ  is the CRRA TI-forward probability measure or the CRRA-forward measure. ),( ITtγξ  is the 

density of the CRRA-forward measure with respect to P. [ ]),()(
1

IB Ttt σλ
γ

γ −−
 represents the price of 

risk expressed under the new probability measure.  

 

Appendix B. Proof of Proposition 1.  

By using expression (4) and by operating the appropriate calculations )(tyγ  can be expressed as a 

quadratic function of the state variables. 
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The dynamics of the state variables under the probability ( )ITP ,γ  are given by:  
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by Girsanov’s theorem, ( ) ( )[ ]dtTtttdztdz IB
TI ,)(
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( )ITP ,γ . Moreover, let [ ]00'
SX σσ = , [ ]0'

rurrsrr σρσρσ =  and [ ]δδδδδδδ σρσρσρσ vuS='  

denote the 3-dimensional diffusion vectors of the state variables.  

Following the relevant literature, ( )ITtB ,γ  is an exponential quadratic function of the state 

variables given in equation (14). ( ) ( ) ( )III TtBTtBTtB ,, and ,,,,, 210 γγγ  satisfy three ODEs, subject to the 

terminal conditions, which are now well-known. 

By using Itô lemma, ),( ITtBγ  and ),,( ITtγϕ  follow respectively the SDEs: 
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Note that ),( ITtγµ and ),( ITtφµ are irrelevant for our allocation problem and will not be specified. By 

using Leibniz type rule for stochastic integrals (see Munk and Sorensen, 2004), ),,( ITtγΦ  and ),( ITtΘ  

obey the following equations: 
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 By using Itô’s lemma, the instantaneous return of the optimal wealth (15) may be written:  
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Identifying the diffusion terms of the admissible wealth (16) and the optimum wealth (B.3) 

yields: 
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which leads to equation (17).  

 Parts a), b) and c) of Proposition 1 can directly be obtained from this equation. 

 

Appendix C. Proof of Proposition 2. 

The following matrix products give: 
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By using equation (18) and by rearranging terms, we obtain: 
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By replacing the first two moments and the appropriate covariances of the synthetic assets into (C.3) 

and (C.4), equations (21), (22) and (23), in the main text, are obtained. 

 

Appendix D. Proof of Proposition 3. 

a) Expression (24) can easily be derived by operating the computation of ),(1
IB Ttσσ−Σ .  

b) ( )IB Tt,
γ

σ  may be written in the following manner:  
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Equation (20) may thus be expressed as: 
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Using (C.1) leads to equations (25). 

c) Let I be a 3-dimensional identity matrix and 321 , , III be its columns. Then, we have 
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Plugging the above expression into equation (20) and rearranging terms leads to equations (26) and 

(27). 

 The first order derivative of ( )ITtB ,γ  with respect to the state variables can be written:  
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derivatives into (D.1) gives:  
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Expressions (D.2) and (24) allow one to establish equation (27’). 
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Table 1 

Numerical values of the parameters used in the model 

r  δ  X  α  κ  δ  Sσ  rσ  δσ  f(0,t) 

0.04 0.07 4.6 0.25 1.5 0.05 0.35 0.01 0.25 0.04 

0Xλ  0rλ  0δλ  XXλ  δλX  rrλ  δδλ  Srρ  δρS  δρr  

3.9 0.04 0.5 -0.8 -1.5 -0.15 -1.7 -0.15 0.7 -0.1 
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Fig. 1. Speculative futures proportion varying with the 
commodity price. This figure plots )(tMV

Hπ as a function 
of the (logarithm) commodity price ranging from $80 to 
$120 for 7.0=γ (solid line), 1=γ (dashed-dotted line), 

3=γ (dotted line), 6=γ (dashed line). The other 
parameters are given in Table 1. 

Fig. 2. Speculative commodity proportion varying with 
the commodity price. This figure plots )(tMV

Sπ as a 
function of the (logarithm) commodity price ranging from 
$80 to $120 for 7.0=γ (solid line), 1=γ (dashed-dotted 
line), 3=γ (dotted line), 6=γ (dashed line). The other 
parameters are given in Table 1. 

Fig.4 Speculative commodity proportion varying with the 
convenience yield. This figure plots )(tMV

Sπ as a function 
of the convenience yield ranging from -5% to 15% 
for 7.0=γ (solid line), 1=γ (dashed-dotted line), 

3=γ (dotted line), 6=γ (dashed line). The other 
parameters are given in Table 1. 

Fig. 5. Investor specific bond (prices of risk) hedging 
futures proportion varying with the commodity price. 
This figure plots )(tHMPR

Hπ  as a function of the 
(logarithm) commodity price ranging from $80 to $120 
for 7.0=γ (solid line), 1=γ (dashed-dotted line), 3=γ  
(dotted line), 6=γ (dashed line). The other parameters 
are given in Table 1. 

Fig. 3. Speculative futures proportion varying with the 
convenience yield. This figure plots )(tMV

Hπ as a 
function of the convenience yield ranging from -5% to 
15% for 7.0=γ (solid line), 1=γ (dashed-dotted line), 

3=γ (dotted line), 6=γ (dashed line). The other 
parameters are given in Table 1. 

Fig. 6. Investor specific bond (prices of risk) hedging 
commodity proportion varying with the commodity price. 
This figure plots )(tHMPR

Sπ  as a function of the 
(logarithm) commodity price ranging from $80 to $120 
for 7.0=γ (solid line), 1=γ (dashed-dotted line), 

3=γ (dotted line), 6=γ (dashed line). The other 
parameters are given in Table 1. 
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Fig. 9. Speculative futures proportion varying with the 
investor’s horizon. This figure plots )(tMV

Hπ as a function 
of the investor horizon ranging from 0 to 2 years 
for 7.0=γ (solid line), 1=γ (dashed-dotted line), 

3=γ (dotted line), 6=γ (dashed line). The other 
parameters are given in Table 1. 

Fig. 10 Speculative commodity proportion varying with 
the investor’s horizon. This figure plots )(tMV

Sπ as a 
function of the investor horizon ranging from 0 to 2 years 
for 7.0=γ (solid line), 1=γ (dashed-dotted line), 

3=γ (dotted line), 6=γ (dashed line). The other 
parameters are given in Table 1. 

Fig. 11. Investor-specific bond (prices of risk) hedging 
futures proportion varying with the investor’s horizon. This 
figure plots )(tHMPR

Hπ as a function of the investor horizon 
ranging from 0 to 2 years for 7.0=γ (solid 
line), 1=γ (dashed-dotted line), 3=γ (dotted line), 6=γ  
(dashed line). The other parameters are given in Table 1. 

Fig. 12. Investor-specific bond (prices of risk) hedging 
commodity proportion varying with the investor’s horizon. 
This figure plots )(tHMPR

Sπ as a function of the investor 
horizon ranging from 0 to 2 years for 7.0=γ (solid 
line), 1=γ (dashed-dotted line), 3=γ (dotted line), 

6=γ (dashed line). The other parameters are given in 
Table 1. 

Fig. 7. Investor specific bond (prices of risk) hedging 
futures proportion varying with the convenience yield. 
This figure plots )(tHMPR

Hπ  as a function of the 
convenience yield ranging from -5% to 15% 
for 7.0=γ (solid line), 1=γ (dashed-dotted line), 

3=γ (dotted line), 6=γ (dashed line). The other 
parameters are given in Table 1. 

 

Fig. 8. Investor specific bond (prices of risk) hedging 
commodity proportion varying with the convenience 
yield. This figure plots )(tHMPR

Sπ  as a function of the 
convenience yield ranging from -5% to 15% 
for 7.0=γ (solid line), 1=γ (dashed-dotted line), 

3=γ (dotted line), 6=γ (dashed line). The other 
parameters are given in Table 1. 


